Development and external validation of a prediction risk model for short-term mortality among hospitalized US COVID-19 patients: A proposal for the COVID-AID risk tool

被引:30
作者
Hajifathalian, Kaveh [1 ]
Sharaiha, Reem Z. [1 ]
Kumar, Sonal [1 ]
Krisko, Tibor [1 ]
Skaf, Daniel [2 ]
Ang, Bryan [2 ]
Redd, Walker D. [3 ,4 ]
Zhou, Joyce C. [4 ]
Hathorn, Kelly E. [4 ,5 ]
McCarty, Thomas R. [4 ,5 ]
Bazarbashi, Ahmad Najdat [4 ,5 ]
Njie, Cheikh [3 ,4 ]
Wong, Danny [3 ,4 ]
Shen, Lin [4 ,5 ]
Sholle, Evan [6 ]
Cohen, David E. [1 ]
Brown, Robert S., Jr. [1 ]
Chan, Walter W. [4 ,5 ]
Fortune, Brett E. [1 ]
机构
[1] New York Presbyterian Hosp, Weill Cornell Med, Div Gastroenterol & Hepatol, New York, NY 10032 USA
[2] Weill Cornell Med, Joan & Sanford I Weill Med Coll, New York, NY USA
[3] Brigham & Womens Hosp, Dept Med, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Div Gastroenterol Hepatol & Endoscopy, 75 Francis St, Boston, MA 02115 USA
[6] New York Presbyterian Hosp, Weill Cornell Med, Dept Res Informat Informat Technol Serv, New York, NY USA
关键词
D O I
10.1371/journal.pone.0239536
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background The 2019 novel coronavirus disease (COVID-19) has created unprecedented medical challenges. There remains a need for validated risk prediction models to assess short-term mortality risk among hospitalized patients with COVID-19. The objective of this study was to develop and validate a 7-day and 14-day mortality risk prediction model for patients hospitalized with COVID-19. Methods We performed a multicenter retrospective cohort study with a separate multicenter cohort for external validation using two hospitals in New York, NY, and 9 hospitals in Massachusetts, respectively. A total of 664 patients in NY and 265 patients with COVID-19 in Massachusetts, hospitalized from March to April 2020. Results We developed a risk model consisting of patient age, hypoxia severity, mean arterial pressure and presence of kidney dysfunction at hospital presentation. Multivariable regression model was based on risk factors selected from univariable and Chi-squared automatic interaction detection analyses. Validation was by receiver operating characteristic curve (discrimination) and Hosmer-Lemeshow goodness of fit (GOF) test (calibration). In internal cross-validation, prediction of 7-day mortality had an AUC of 0.86 (95%CI 0.74-0.98; GOF p = 0.744); while 14-day had an AUC of 0.83 (95%CI 0.69-0.97; GOF p = 0.588). External validation was achieved using 265 patients from an outside cohort and confirmed 7- and 14-day mortality prediction performance with an AUC of 0.85 (95%CI 0.78-0.92; GOF p = 0.340) and 0.83 (95%CI 0.76-0.89; GOF p = 0.471) respectively, along with excellent calibration. Retrospective data collection, short follow-up time, and development in COVID-19 epicenter may limit model generalizability. Conclusions The COVID-AID risk tool is a well-calibrated model that demonstrates accuracy in the prediction of both 7-day and 14-day mortality risk among patients hospitalized with COVID-19. This prediction score could assist with resource utilization, patient and caregiver education, and provide a risk stratification instrument for future research trials.
引用
收藏
页数:15
相关论文
共 35 条
[1]  
[Anonymous], 2012, Kidney Int Suppl (2011), V2, P19, DOI [10.1038/kisup.2011.32, DOI 10.1038/KISUP.2011.32]
[2]   Tools for analyzing multiple imputed datasets [J].
Carlin, John B. ;
Li, Ning ;
Greenwood, Philip ;
Coffey, Carolyn .
STATA JOURNAL, 2003, 3 (03) :226-244
[3]  
CDC COVID-19 Response Team, 2020, MMWR-MORBID MORTAL W, V69, P343, DOI [10.15585/mmwr.mm6912e2, 10.15585/mmwr.mm6915e4]
[4]  
Chen T, 2020, BMJ-BRIT MED J, V368, DOI [10.1136/bmj.m1295, 10.1136/bmj.m1091]
[5]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1136/bmj.g7594]
[6]   An interactive web-based dashboard to track COVID-19 in real time [J].
Dong, Ensheng ;
Du, Hongru ;
Gardner, Lauren .
LANCET INFECTIOUS DISEASES, 2020, 20 (05) :533-534
[7]  
Duca Andrea, 2020, Emerg Med Pract, V22, pCD1
[8]   Model Transparency and Validation: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7 [J].
Eddy, David M. ;
Hollingworth, William ;
Caro, J. Jaime ;
Tsevat, Joel ;
McDonald, Kathryn M. ;
Wong, John B. ;
Force, ISPOR-SMDM Modeling Good Res Practices Task .
MEDICAL DECISION MAKING, 2012, 32 (05) :733-743
[9]   Acute kidney injury in SARS-CoV-2 infected patients [J].
Fanelli, Vito ;
Fiorentino, Marco ;
Cantaluppi, Vincenzo ;
Gesualdo, Loreto ;
Stallone, Giovanni ;
Ronco, Claudio ;
Castellano, Giuseppe .
CRITICAL CARE, 2020, 24 (01)
[10]   Heart Disease and Stroke Statistics-2013 Update A Report From the American Heart Association [J].
Go, Alan S. ;
Mozaffarian, Dariush ;
Roger, Veronique L. ;
Benjamin, Emelia J. ;
Berry, Jarett D. ;
Borden, William B. ;
Bravata, Dawn M. ;
Dai, Shifan ;
Ford, Earl S. ;
Fox, Caroline S. ;
Franco, Sheila ;
Fullerton, Heather J. ;
Gillespie, Cathleen ;
Hailpern, Susan M. ;
Heit, John A. ;
Howard, Virginia J. ;
Huffman, Mark D. ;
Kissela, Brett M. ;
Kittner, Steven J. ;
Lackland, Daniel T. ;
Lichtman, Judith H. ;
Lisabeth, Lynda D. ;
Magid, David ;
Marcus, Gregory M. ;
Marelli, Ariane ;
Matchar, David B. ;
McGuire, Darren K. ;
Mohler, Emile R. ;
Moy, Claudia S. ;
Mussolino, Michael E. ;
Nichol, Graham ;
Paynter, Nina P. ;
Schreiner, Pamela J. ;
Sorlie, Paul D. ;
Stein, Joel ;
Turan, Tanya N. ;
Virani, Salim S. ;
Wong, Nathan D. ;
Woo, Daniel ;
Turner, Melanie B. .
CIRCULATION, 2013, 127 (01) :E6-E245