A Gersten-Witt spectral sequence for regular schemes

被引:70
作者
Balmer, P
Walter, C
机构
[1] Univ Munster, SFB 478, D-48149 Munster, Germany
[2] Univ Nice, UMR 6621 CNRS, Lab JA Dieudonne, F-06108 Nice 02, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2002年 / 35卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0012-9593(01)01084-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A spectral sequence is constructed whose non-zero E-1-terms are the Witt groups of the residue fields of a regular scheme X, arranged in Gersten-Witt complexes, and whose limit is the four global Witt groups of X. This has several immediate consequences concerning purity for Witt groups of low-dimensional schemes. We also obtain an easy proof of the Gersten Conjecture in dimension smaller than 5. The Witt groups of punctured spectra of regular local rings are also computed. (C) 2002 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:127 / 152
页数:26
相关论文
共 27 条
[1]  
[Anonymous], 1982, ASTERISQUE
[2]   Derived Witt groups of a scheme [J].
Balmer, P .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 141 (02) :101-129
[3]   Triangular Witt groups - Part I: The 12-term localization exact sequence [J].
Balmer, P .
K-THEORY, 2000, 19 (04) :311-363
[4]   Triangular Witt groups - Part II: From usual to derived [J].
Balmer, P .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (02) :351-382
[5]  
BALMER P, UNPUB DERIVED WITT G
[6]  
Cartan H., 1956, HOMOLOGICAL ALGEBRA
[7]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[8]  
ETTNER A, 1999, RESIDUENABBILDUNG TH
[9]   ON THE INJECTIVITY OF THE MAP OF THE WITT GROUP OF A SCHEME INTO THE WITT GROUP OF ITS FUNCTION-FIELD [J].
FERNANDEZCARMENA, F .
MATHEMATISCHE ANNALEN, 1987, 277 (03) :453-468
[10]  
Hartshorne R., 1974, ALGEBRAIC GEOMETRY