Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix

被引:23
作者
Han, B [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
vector refinement equation; refinable function vector; Sobolev space; rate of convergence; smoothness; cascade algorithm;
D O I
10.1007/s10444-004-7615-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a necessary and sufficient condition for the existence of solutions in a Sobolev space W-p(k)(R-s) ( 1 <= p <= infinity) to a vector refinement equation with a general dilation matrix. The criterion is constructive and can be implemented. Rate of convergence of vector cascade algorithms in a Sobolev space W-p(k)(R-s) will be investigated. When the dilation matrix is isotropic, a characterization will be given for the L-p (1 <= p <= infinity) critical smoothness exponent of a refinable function vector without the assumption of stability on the refinable function vector. As a consequence, we show that if a compactly supported function vector phi is an element of L-p(R-s) (phi is an element of C(R-s) when p = infinity) satisfies a refinement equation with a finitely supported matrix mask, then all the components of phi must belong to a Lipschitz space Lip(nu, L-p(R-s)) for some nu > 0. This paper generalizes the results in R. Q. Jia, K. S. Lau and D. X. Zhou (J. Fourier Anal. Appl. 7 ( 2001) 143 - 167) in the univariate setting to the multivariate setting.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 30 条
[1]  
CABRELLI C, IN PRESS MEM AM MATH
[2]  
CAVARETTA A, 1991, MEM AM MATH SOC, V453
[3]   Convergence of vector subdivision schemes in Sobolev spaces [J].
Chen, DR ;
Jia, RQ ;
Riemenschneider, SD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (01) :128-149
[4]   Regularity of multivariate refinable functions [J].
Cohen, A ;
Gröchenig, K ;
Villemoes, LF .
CONSTRUCTIVE APPROXIMATION, 1999, 15 (02) :241-255
[5]   Regularity of refinable function vectors [J].
Cohen, A ;
Daubechies, I ;
Plonka, G .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :295-324
[6]   CHARACTERIZATIONS OF SCALING FUNCTIONS - CONTINUOUS SOLUTIONS [J].
COLELLA, D ;
HEIL, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (02) :496-518
[7]   Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets [J].
Han, B .
JOURNAL OF APPROXIMATION THEORY, 2001, 110 (01) :18-53
[8]   Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix [J].
Han, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) :43-67
[9]   Vector cascade algorithms and refinable function vectors in Sobolev spaces [J].
Han, B .
JOURNAL OF APPROXIMATION THEORY, 2003, 124 (01) :44-88
[10]   Computing the smoothness exponent of a symmetric multivariate refinable function [J].
Han, B .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :693-714