InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands

被引:36
作者
Han, Yu [1 ]
Li, Qiang [1 ]
Ng, Kar Wei [2 ]
Zhu, Si [1 ]
Lau, Kei May [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
[2] Univ Macau, Inst Appl Phys & Mat Engn, Ave Univ, Macau, Peoples R China
关键词
InP nano-ridges; III-V on Si; Si photonics; InGaAs quantum wires; LASERS; SI;
D O I
10.1088/1361-6528/aab53b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal-organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III-V nano-light emitters on mainstream (001) Si substrates.
引用
收藏
页数:6
相关论文
共 24 条
[1]   Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures [J].
Biasiol, G ;
Gustafsson, A ;
Leifer, K ;
Kapon, E .
PHYSICAL REVIEW B, 2002, 65 (20) :2053061-20530615
[2]  
Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/NPHOTON.2016.21, 10.1038/nphoton.2016.21]
[3]   Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices [J].
Cipro, R. ;
Baron, T. ;
Martin, M. ;
Moeyaert, J. ;
David, S. ;
Gorbenko, V. ;
Bassani, F. ;
Bogumilowicz, Y. ;
Barnes, J. P. ;
Rochat, N. ;
Loup, V. ;
Vizioz, C. ;
Allouti, N. ;
Chauvin, N. ;
Bao, X. Y. ;
Ye, Z. ;
Pin, J. B. ;
Sanchez, E. .
APPLIED PHYSICS LETTERS, 2014, 104 (26)
[4]   Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001) [J].
Guo, W. ;
Date, L. ;
Pena, V. ;
Bao, X. ;
Merckling, C. ;
Waldron, N. ;
Collaert, N. ;
Caymax, M. ;
Sanchez, E. ;
Vancoille, E. ;
Barla, K. ;
Thean, A. ;
Eyben, P. ;
Vandervorst, W. .
APPLIED PHYSICS LETTERS, 2014, 105 (06)
[5]   Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths [J].
Han, Yu ;
Li, Qiang ;
Zhu, Si ;
Ng, Kar Wei ;
Lau, Kei May .
APPLIED PHYSICS LETTERS, 2017, 111 (21)
[6]   Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates [J].
Han, Yu ;
Li, Qiang ;
Lau, Kei May .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (24)
[7]   Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon [J].
Han, Yu ;
Li, Qiang ;
Chang, Shih-Pang ;
Hsu, Wen-Da ;
Lau, Kei May .
APPLIED PHYSICS LETTERS, 2016, 108 (24)
[8]   Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches [J].
Jiang, S. ;
Merckling, C. ;
Guo, W. ;
Waldron, N. ;
Caymax, M. ;
Vandervorst, W. ;
Seefeldt, M. ;
Heyns, M. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (02)
[9]   Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping [J].
Li, J. Z. ;
Bai, J. ;
Park, J.-S. ;
Adekore, B. ;
Fox, K. ;
Carroll, M. ;
Lochtefeld, A. ;
Shellenbarger, Z. .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[10]   Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer [J].
Li, Qiang ;
Lai, Billy ;
Lau, Kei May .
APPLIED PHYSICS LETTERS, 2017, 111 (17)