Exploring the internal structure of soot particles using nanoindentation: A reactive molecular dynamics study

被引:27
作者
Pascazio, Laura [1 ]
Martin, Jacob W. [1 ,2 ]
Bowal, Kimberly [1 ]
Akroyd, Jethro [1 ,2 ]
Kraft, Markus [1 ,2 ,3 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, West Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
[2] Cambridge Ctr Adv Res & Educ Singapore CARES, CREATE Tower,1 Create Way, Singapore 138602, Singapore
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
Molecular dynamics; Reactive force field; Hardness; Crosslinking; Nanoindentation; Soot; POLYCYCLIC AROMATIC-HYDROCARBONS; TRANSMISSION ELECTRON-MICROSCOPY; PREMIXED FLAMES; NANOPARTICLE FORMATION; ELASTIC PROPERTIES; NASCENT SOOT; SIZE; METHODOLOGY; COMBUSTION; NUCLEATION;
D O I
10.1016/j.combustflame.2020.04.029
中图分类号
O414.1 [热力学];
学科分类号
摘要
The mechanical properties and internal structure of soot nanoparticles is investigated using reactive molecular dynamics simulations of nanoindenting model soot particles. The particles that are provided as inputs to the simulations are generated using reactive molecular dynamics to create 3D networks of crosslinked coronene, circumanthracene and core-shell mixtures of coronene and circumanthracene. The results of the simulated nanoindentation experiments are analysed as a function of the degree of crosslinking (defined as the number of crosslinks per monomer in the particles), the size and the core shell structure of the particles. In the case of homogeneous particles (i.e. those without a core-shell structure), the simulations show a unique relationship between the degree of crosslinking (CL ) and the simulated hardness, Young's modulus and deformation ratio. In the case of particles with a core-shell structure, a unique relationship was only found by considering the core-shell ratio and the degree of crosslinking in both the core and the shell. Our results allow for interpretation of the nanoindentation experiments as suggesting crosslinks are present in mature soot particles and preliminary evidence that crosslinks also are present within the interior of soot particles (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 55 条
[1]   Detection of Aliphatically Bridged Multi-Core Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling High-Resolution Tandem Mass Spectrometry [J].
Adamson, B. D. ;
Skeen, S. A. ;
Ahmed, M. ;
Hansen, N. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (48) :9338-9349
[2]   Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM) [J].
Apicella, B. ;
Pre, P. ;
Alfe, M. ;
Ciajolo, A. ;
Gargiulo, V. ;
Russo, C. ;
Tregrossi, A. ;
Deldique, D. ;
Rouzaud, J. N. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 :1895-1902
[3]   Dry tribology and nanomechanics of gaseous flame soot in comparison with carbon black and diesel soot [J].
Bhowmick, H. ;
Majumdar, S. K. ;
Biswas, S. K. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2012, 226 (C2) :394-402
[4]   Relationship Between Physical Structure and Tribology of Single Soot Particles Generated by Burning Ethylene [J].
Bhowmick, Hiralal ;
Biswas, S. K. .
TRIBOLOGY LETTERS, 2011, 44 (02) :139-149
[5]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[6]   Experimental and numerical study of the evolution of soot primary particles in a diffusion flame [J].
Botero, Maria L. ;
Eaves, Nick ;
Dreyer, Jochen A. H. ;
Sheng, Yuan ;
Akroyd, Jethro ;
Yang, Wenming ;
Kraft, Markus .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (02) :2047-2055
[7]   Internal structure of soot particles in a diffusion flame [J].
Botero, Maria L. ;
Sheng, Yuan ;
Akroyd, Jethro ;
Martin, Jacob ;
Dreyer, Jochen A. H. ;
Yang, Wenming ;
Kraft, Markus .
CARBON, 2019, 141 :635-642
[8]   PAH structure analysis of soot in a non-premixed flame using high-resolution transmission electron microscopy and optical band gap analysis [J].
Botero, Maria L. ;
Adkins, Erin M. ;
Gonzalez-Calera, Silvia ;
Miller, Houston ;
Kraft, Markus .
COMBUSTION AND FLAME, 2016, 164 :250-258
[9]   HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels [J].
Botero, Maria L. ;
Chen, Dongping ;
Gonzalez-Calera, Silvia ;
Jefferson, David ;
Kraft, Markus .
CARBON, 2016, 96 :459-473
[10]   Partitioning of polycyclic aromatic hydrocarbons in heterogeneous clusters [J].
Bowal, Kimberly ;
Martin, Jacob W. ;
Kraft, Markus .
CARBON, 2019, 143 :247-256