A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line

被引:33
作者
Bhrawy, Ali H. [1 ,2 ]
Alghamdi, Mohammed M. [1 ]
Taha, Taha M. [2 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
关键词
operational matrix; modified generalized Laguerre polynomials; tau method; multi-term FDEs; Riemann-Liouville fractional integration; BOUNDARY-VALUE-PROBLEMS; COLLOCATION METHOD; ORDERS;
D O I
10.1186/1687-1847-2012-179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derived a new operational matrix of fractional integration of arbitrary order for modified generalized Laguerre polynomials. The fractional integration is described in the Riemann-Liouville sense. This operational matrix is applied together with the modified generalized Laguerre tau method for solving general linear multi-term fractional differential equations (FDEs). Only small dimension of a modified generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the present method is very effective and convenient for linear multi-term FDEs on a semi-infinite interval.
引用
收藏
页数:12
相关论文
共 38 条
[1]   A study of nonlinear Langevin equation involving two fractional orders in different intervals [J].
Ahmad, Bashir ;
Nieto, Juan J. ;
Alsaedi, Ahmed ;
El-Shahed, Moustafa .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) :599-606
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 2012, WORLD SCI
[5]  
[Anonymous], 1989, SPECTRAL METHODS FLU
[6]   On the solution set for a class of sequential fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
[7]   An existence result for a superlinear fractional differential equation [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1129-1132
[8]   A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations [J].
Bhrawy, A. H. ;
Tharwat, M. M. ;
Yildirim, A. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) :4245-4252
[9]   The operational matrix of fractional integration for shifted Chebyshev polynomials [J].
Bhrawy, A. H. ;
Alofi, A. S. .
APPLIED MATHEMATICS LETTERS, 2013, 26 (01) :25-31
[10]   A quadrature tau method for fractional differential equations with variable coefficients [J].
Bhrawy, A. H. ;
Alofi, A. S. ;
Ezz-Eldien, S. S. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (12) :2146-2152