Modelling an Axially Moving Beam using the Absolute Nodal Coordinate Formulation

被引:0
作者
Sinwel, A. [1 ]
Gerstmayr, J. [1 ]
机构
[1] Linz Ctr Mechatron GmbH, Linz, Austria
来源
PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY | 2010年 / 94卷
基金
奥地利科学基金会;
关键词
axially moving beam; absolute nodal coordinate formulation; Bernoulli-Euler beam; frictional contact; FLEXIBLE SLIDING BEAMS; DYNAMICS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the scope of this paper, a finite element formulation for an axially moving beam is presented. The beam element is based on the absolute nodal coordinate formulation, where position and slope vectors are used as degrees of freedom instead of rotational parameters. The equations of motion for an axially moving beam are derived from generalized Lagrange equations in a Lagrange-Eulerian sense. This procedure yields equations which can be implemented as a straightforward augmentation to the standard equations of motion for a Bernoulli-Euler beam. Moreover, a contact model for frictional contact between an axially moving strip and rotating rolls is presented. To show the efficiency of the method, simulations of a belt drive are presented.
引用
收藏
页数:17
相关论文
共 12 条
[1]   Dynamics of flexible sliding beams - Non-linear analysis part II: Transient response [J].
Behdinan, K ;
Tabarrok, B .
JOURNAL OF SOUND AND VIBRATION, 1997, 208 (04) :541-565
[2]   Dynamics of flexible sliding beams - Non-linear analysis part I: Formulation [J].
Behdinan, K ;
Stylianou, MC ;
Tabarrok, B .
JOURNAL OF SOUND AND VIBRATION, 1997, 208 (04) :517-539
[3]   Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation [J].
Berzeri, M ;
Shabana, AA .
JOURNAL OF SOUND AND VIBRATION, 2000, 235 (04) :539-565
[4]   Nonlinear dynamics of three-dimensional belt drives using the finite-element method [J].
Dufva, Kari ;
Kerkkaenen, Kimmo ;
Maqueda, Luis G. ;
Shabana, Ahmed A. .
NONLINEAR DYNAMICS, 2007, 48 (04) :449-466
[5]   On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach [J].
Gerstmayr, Johannes ;
Irschik, Hans .
JOURNAL OF SOUND AND VIBRATION, 2008, 318 (03) :461-487
[6]   The equations of Lagrange written for a non-material volume [J].
Irschik, H ;
Holl, HJ .
ACTA MECHANICA, 2002, 153 (3-4) :231-248
[7]   Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation [J].
Shabana, A. A. .
MULTIBODY SYSTEM DYNAMICS, 1997, 1 (03) :339-348
[8]   ON THE DYNAMICS OF FLEXIBLE BEAMS UNDER LARGE OVERALL MOTIONS - THE PLANE CASE .1. [J].
SIMO, JC ;
VUQUOC, L .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1986, 53 (04) :849-854
[9]   Modeling and stability analysis of an axially moving beam with frictional contact [J].
Spelsberg-Korspeter, Gottfried ;
Kirillov, Oleg N. ;
Hagedorn, Peter .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2008, 75 (03) :0310011-03100110
[10]   An alternative approach for the analysis of nonlinear vibrations of pipes conveying fluid [J].
Stangl, Michael ;
Gerstmayr, Johannes ;
Irschik, Hans .
JOURNAL OF SOUND AND VIBRATION, 2008, 310 (03) :493-511