Geometric transitions, flops and non-Kahler manifolds: II

被引:36
作者
Becker, M
Dasgupta, K
Katz, S
Knauf, A
Tatar, R
机构
[1] McGill Univ, Montreal, PQ H3A 2T8, Canada
[2] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[3] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[6] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[7] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
[8] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.nuclphysb.2005.12.023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We continue our study of geometric transitions in type II and heterotic theories. In type IIB theory we discuss an F-theory setup which clarifies many of our earlier assumptions and allows us to study gravity duals of N = 1 gauge theories with arbitrary global symmetry group G. We also point out the subtle differences between global and local metrics, and show that in many cases the global descriptions are far more complicated than discussed earlier. We determine the full global description in type I/heterotic theory. In type IIA, our analysis gives rise to a local non-Kahler metric whose global description involves a particular orientifold action with gauge fluxes localised on branes. We are also able to identify the three form fields that allow for a smooth flop in the M-theory lift. We briefly discuss the issues of generalized complex structures in type IIB theory and possible half-twisted models in the heterotic duals of our type 11 models. In a companion paper we will present details on the topological aspects of these models. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 183
页数:60
相关论文
共 50 条
[21]   NON-KAHLER SYMPLECTIC MANIFOLDS WITH TORIC SYMMETRIES [J].
Lin, Yi ;
Pelayo, Alvaro .
QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (01) :103-114
[22]   EXAMPLES OF NON-KAHLER SYMPLECTIC-MANIFOLDS [J].
YAMATO, K .
OSAKA JOURNAL OF MATHEMATICS, 1990, 27 (02) :431-439
[23]   THE LOCAL INDEX THEOREM FOR NON-KAHLER MANIFOLDS [J].
BISMUT, JM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (05) :139-142
[24]   EXAMPLES OF COMPACT NON-KAHLER ALMOST KAHLER-MANIFOLDS [J].
CORDERO, LA ;
FERNANDEZ, M ;
DELEON, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (02) :280-286
[25]   Non-Kahler Calabi-Yau Manifolds [J].
Tseng, Li-Sheng ;
Yau, Shing-Tung .
STRING-MATH 2011, 2012, 85 :241-+
[26]   ON A CLASS OF NON-KAHLER COMPLEX-MANIFOLDS [J].
VAISMAN, I .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (11) :365-368
[27]   Geometry and Automorphisms of Non-Kahler Holomorphic Symplectic Manifolds [J].
Bogomolov, Fedor ;
Kurnosov, Nikon ;
Kuznetsova, Alexandra ;
Yasinsky, Egor .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) :12302-12341
[28]   Morse-type integrals on non-Kahler manifolds [J].
Kolodziej, Slawomir ;
Tosatti, Valentino .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) :991-1004
[29]   Eigenvalues of the complex Laplacian on compact non-Kahler manifolds [J].
Khan, Gabriel J. H. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (02) :233-249
[30]   SMALL DEFORMATIONS OF A CLASS OF COMPACT NON-KAHLER MANIFOLDS [J].
ALESSANDRINI, L ;
BASSANELLI, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :1059-1062