Existence of positive solutions for a system of semipositone coupled discrete boundary value problems

被引:7
作者
Henderson, Johnny [1 ]
Luca, Rodica [2 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Gh Asachi Tech Univ, Dept Math, Iasi 700506, Romania
关键词
Difference equations; multi-point coupled boundary conditions; positive solutions; sign-changing nonlinearities; HOMOCLINIC SOLUTIONS; SUBHARMONIC SOLUTIONS; DIFFERENCE-EQUATIONS; P-LAPLACIAN;
D O I
10.1080/10236198.2019.1585831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of positive solutions for a system of nonlinear second-order difference equations with parameters and sign-changing nonlinearities, subject to multi-point coupled boundary conditions. In the proof of our main theorems we use the nonlinear alternative of Leray-Schauder type and the Guo-Krasnosel'skii fixed point theorem.
引用
收藏
页码:516 / 541
页数:26
相关论文
共 30 条
[1]  
Afrouzi G. A., 2014, ELECT J DIFFERENTIAL, V134, P1
[2]  
AGARWAL RP, 2001, CAMB TRACT MATH, P1
[3]   Solutions to second-order three-point problems on time scales [J].
Anderson, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (08) :673-688
[4]  
[Anonymous], 2001, INTRO APPL
[5]  
[Anonymous], PANAMER MATH J
[6]  
Atici F., 1996, PANAMER MATH J, V6, P41
[7]   ON VARIATIONAL AND TOPOLOGICAL METHODS IN NONLINEAR DIFFERENCE EQUATIONS [J].
Balanov, Zalman ;
Garcia-Azpeitia, Carlos ;
Krawcewicz, Wieslaw .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (06) :2813-2844
[8]  
CHEUNG W.S., 2004, Aust. J. Math. Anal. Appl., V1
[9]   HOMOCLINIC SOLUTIONS OF DISCRETE NONLINEAR SYSTEMS VIA VARIATIONAL METHOD [J].
Erbe, Lynn ;
Jia, Baoguo ;
Zhang, Qinqin .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (01) :271-294
[10]  
Goodrich CS, 2013, COMMENT MATH UNIV CA, V54, P509