A high performance wearable strain sensor with advanced thermal management for motion monitoring

被引:295
作者
Tan, Cenxiao [1 ,2 ,3 ]
Dong, Zhigang [4 ]
Li, Yehua [5 ]
Zhao, Haiguang [1 ,2 ,3 ]
Huang, Xingyi [6 ]
Zhou, Zhaocai [5 ]
Jiang, Jin-Wu [7 ]
Long, Yun-Ze [1 ,2 ,3 ]
Jiang, Pingkai [6 ]
Zhang, Tong-Yi [8 ]
Sun, Bin [1 ,2 ,3 ]
机构
[1] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Univ Ind Joint Ctr Ocean Observat & Broadband Com, Qingdao 266071, Peoples R China
[3] Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 266071, Peoples R China
[4] Qingdao Univ, Sch Phys Educ, Qingdao 266071, Peoples R China
[5] Fudan Univ, Sch Life Sci, State Key Lab Genet Engn, Shanghai 200438, Peoples R China
[6] Shanghai Jiao Tong Univ, Dept Polymer Sci & Engn, Shanghai Key Lab Elect Insulat & Thermal Aging, Shanghai 200240, Peoples R China
[7] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200444, Peoples R China
[8] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
关键词
BORON-NITRIDE NANOSHEETS; CONDUCTIVITY; COMPOSITES; SKIN; TRANSPARENT; ELECTRONICS; FABRICATION;
D O I
10.1038/s41467-020-17301-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Resistance change under mechanical stimuli arouses mass operational heat, damaging the performance, lifetime, and reliability of stretchable electronic devices, therefore rapid thermal heat dissipating is necessary. Here we report a stretchable strain sensor with outstanding thermal management. Besides a high stretchability and sensitivity testified by human motion monitoring, as well as long-term durability, an enhanced thermal conductivity from the casted thermoplastic polyurethane-boron nitride nanosheets layer helps rapid heat transmission to the environments, while the porous electrospun fibrous thermoplastic polyurethane membrane leads to thermal insulation. A 32% drop of the real time saturated temperature is achieved. For the first time we in-situ investigated the dynamic operational temperature fluctuation of stretchable electronics under repeating stretching-releasing processes. Finally, cytotoxicity test confirms that the nanofillers are tightly restricted in the nanocomposites, making it harmless to human health. All the results prove it an excellent candidate for the next-generation of wearable devices. Though stretchable strain sensors are attractive for next-generation applications due to their high sensitivity, heat generated in these devices limits their reliability. Here, the authors report boron nitride nanosheet-based stretchable strain sensors with enhanced thermal management.
引用
收藏
页数:10
相关论文
共 68 条
  • [1] Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review
    Amjadi, Morteza
    Kyung, Ki-Uk
    Park, Inkyu
    Sitti, Metin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) : 1678 - 1698
  • [2] Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability
    An, Byeong Wan
    Gwak, Eun-Ji
    Kim, Kukjoo
    Kim, Young-Cheon
    Jang, Jiuk
    Kim, Ju-Young
    Park, Jang-Ung
    [J]. NANO LETTERS, 2016, 16 (01) : 471 - 478
  • [3] [Anonymous], 2004, 55 ANSIASHRAE
  • [4] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [5] Review: Semiconductor Piezoresistance for Microsystems
    Barlian, A. Alvin
    Park, Woo-Tae
    Mallon, Joseph R., Jr.
    Rastegar, Ali J.
    Pruitt, Beth L.
    [J]. PROCEEDINGS OF THE IEEE, 2009, 97 (03) : 513 - 552
  • [6] Unusually high thermal conductivity of carbon nanotubes
    Berber, S
    Kwon, YK
    Tománek, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4613 - 4616
  • [7] BROADBENT S, 2014, J FITNESS RES, V3, P3
  • [8] Review of thermal conductivity in composites: Mechanisms, parameters and theory
    Burger, N.
    Laachachi, A.
    Ferriol, M.
    Lutz, M.
    Toniazzo, V.
    Ruch, D.
    [J]. PROGRESS IN POLYMER SCIENCE, 2016, 61 : 1 - 28
  • [9] Thermal conductivity of polymer-based composites: Fundamentals and applications
    Chen, Hongyu
    Ginzburg, Valeriy V.
    Yang, Jian
    Yang, Yunfeng
    Liu, Wei
    Huang, Yan
    Du, Libo
    Chen, Bin
    [J]. PROGRESS IN POLYMER SCIENCE, 2016, 59 : 41 - 85
  • [10] Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability
    Chen, Jin
    Huang, Xingyi
    Sun, Bin
    Jiang, Pingkai
    [J]. ACS NANO, 2019, 13 (01) : 337 - 345