Ergodicity of dynamical systems on 2-adic spheres

被引:8
作者
Anashin, V. S. [1 ]
Khrennikov, A. Yu. [2 ]
Yurova, E. I. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[2] Linnaeus Univ, Int Ctr Math Modeling, S-35195 Vaxjo, Sweden
基金
俄罗斯基础研究基金会;
关键词
BEHAVIOR; SPACE;
D O I
10.1134/S1064562412060312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:843 / 845
页数:3
相关论文
共 15 条
[1]   UNIFORMLY DISTRIBUTED SEQUENCES OF P-ADIC INTEGERS [J].
ANACHIN, VS .
MATHEMATICAL NOTES, 1994, 55 (1-2) :109-133
[2]  
Anashin V., 2008, NATO SCI PEACE SEC D, P33
[3]  
Anashin V., 2009, APPL ALGEBRAIC DYNAM
[4]   Characterization of Ergodicity of p-Adic Dynamical Systems by Using the van der Put Basis [J].
Anashin, V. S. ;
Khrennikov, A. Yu ;
Yurova, E. I. .
DOKLADY MATHEMATICS, 2011, 83 (03) :306-308
[5]  
Anashin V, 2006, AIP CONF PROC, V826, P3, DOI 10.1063/1.2193107
[6]  
[Anonymous], COMMENT MATH U ST PA
[7]   On p-adic mathematical physics [J].
Dragovich B. ;
Khrennikov A.Y. ;
Kozyrev S.V. ;
Volovich I.V. .
P-Adic Numbers, Ultrametric Analysis, and Applications, 2009, 1 (1) :1-17
[8]  
EICHENAUERHERRM.J, 1998, LECT NOTES STAT, V127, P66, DOI DOI 10.1007/978-1-4612-1690-2
[9]  
Gundlach M, 2001, LECT NOTES PURE APPL, V222, P127
[10]   On ergodic behavior of p-adic dynamical systems [J].
Gundlach, M ;
Khrennikov, A ;
Lindahl, KO .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2001, 4 (04) :569-577