On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions

被引:53
作者
Andras, Sz. [1 ]
Kolumban, J. J. [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Ulam-Hyers stability; First order differential system; Nonlocal initial conditions; Convergent to zero matrix; Fixed point theorem; Vector norm; EQUATIONS;
D O I
10.1016/j.na.2012.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions on compact intervals (in W-1,W-1(0, k)) and on noncompact intervals (in W-w(1,2)(0,infinity), with suitable weight function w). The novelty consists in the simultaneous use of vectorial norms, convergent to zero matrices, Sobolev spaces for studying the Ulam- Hyers stability of equations with nonlocal conditions on noncompact intervals. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] ULAM-HYERS STABILITY OF OPERATORIAL INCLUSIONS IN COMPLETE GAUGE SPACES
    Petru, T. P.
    Bota, M. -F.
    FIXED POINT THEORY, 2012, 13 (02): : 641 - 649
  • [32] Existence and Ulam-Hyers stability results for coincidence problems
    Mlesnite, Oana
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (02): : 108 - 116
  • [33] Ulam-Hyers stability of Black-Scholes equation
    Lungu, Nicolaie
    Ciplea, Sorina Anamaria
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (04): : 467 - 472
  • [34] On coupled best proximity points and Ulam-Hyers stability
    Gupta, Anuradha
    Rohilla, Manu
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (02)
  • [35] Ulam-Hyers stabilities of fractional functional differential equations
    Sousa, J. Vanterler da C.
    de Oliveira, E. Capelas
    Rodrigues, F. G.
    AIMS MATHEMATICS, 2020, 5 (02): : 1346 - 1358
  • [36] Ulam-Hyers stability of Darboux-Ionescu problem
    Marian, Daniela
    Ciplea, Sorina Anamaria
    Lungu, Nicolaie
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 211 - 216
  • [37] Ulam-Hyers stability of Caputo fractional difference equations
    Chen, Churong
    Bohner, Martin
    Jia, Baoguo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7461 - 7470
  • [38] An investigation into the characteristics of VFIDEs with delay: solvability criteria, Ulam-Hyers-Rassias and Ulam-Hyers stability
    Miah, Bapan Ali
    Sen, Mausumi
    Murugan, R.
    Sarkar, Nimai
    Gupta, Damini
    JOURNAL OF ANALYSIS, 2024, 32 (5) : 2749 - 2766
  • [39] Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions
    Zada, Akbar
    Alzabut, Jehad
    Waheed, Hira
    Popa, Ioan-Lucian
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [40] Beam deflection coupled systems of fractional differential equations: existence of solutions, Ulam-Hyers stability and travelling waves
    Bensassa, Kamel
    Dahmani, Zoubir
    Rakah, Mahdi
    Sarikaya, Mehmet Zeki
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)