Tunnel Junction with Perpendicular Magnetic Anisotropy: Status and Challenges

被引:47
作者
Wang, Mengxing [2 ,3 ]
Zhang, Yue [2 ,3 ]
Zhao, Xiaoxuan [2 ,3 ]
Zhao, Weisheng [1 ,2 ,3 ,4 ]
机构
[1] Beihang Univ, Spintron Interdisciplinary Ctr, Beijing 10191, Peoples R China
[2] Beihang Univ, Spintron Interdisciplinary Ctr, Beijing 10191, Peoples R China
[3] Beihang Univ, Sch Elect & Informat Engn, Beijing 10191, Peoples R China
[4] Univ Paris 11, IEF, F-91405 Orsay, France
来源
MICROMACHINES | 2015年 / 6卷 / 08期
基金
中国国家自然科学基金;
关键词
magnetic tunnel junction; perpendicular magnetic anisotropy; spin transfer torque; memory; power consumption; reliability; ROOM-TEMPERATURE; SPIN; MAGNETORESISTANCE; PD/CO; SENSOR; COFEB;
D O I
10.3390/mi6081023
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Magnetic tunnel junction (MTJ), which arises from emerging spintronics, has the potential to become the basic component of novel memory, logic circuits, and other applications. Particularly since the first demonstration of current induced magnetization switching in MTJ, spin transfer torque magnetic random access memory (STT-MRAM) has sparked a huge interest thanks to its non-volatility, fast access speed, and infinite endurance. However, along with the advanced nodes scaling, MTJ with in-plane magnetic anisotropy suffers from modest thermal stability, high power consumption, and manufactural challenges. To address these concerns, focus of research has converted to the preferable perpendicular magnetic anisotropy (PMA) based MTJ, whereas a number of conditions still have to be met before its practical application. This paper overviews the principles of PMA and STT, where relevant issues are preliminarily discussed. Centering on the interfacial PMA in CoFeB/MgO system, we present the fundamentals and latest progress in the engineering, material, and structural points of view. The last part illustrates potential investigations and applications with regard to MTJ with interfacial PMA.
引用
收藏
页码:1023 / 1045
页数:23
相关论文
共 74 条
[1]   Charge trapping-detrapping mechanism of barrier breakdown in MgO magnetic tunnel junctions [J].
Amara-Dababi, S. ;
Sousa, R. C. ;
Chshiev, M. ;
Bea, H. ;
Alvarez-Herault, J. ;
Lombard, L. ;
Prejbeanu, I. L. ;
Mackay, K. ;
Dieny, B. .
APPLIED PHYSICS LETTERS, 2011, 99 (08)
[2]   Highly stable perpendicular magnetic anisotropies of CoFeB/MgO frames employing W buffer and capping layers [J].
An, Gwang-Guk ;
Lee, Ja-Bin ;
Yang, Seung-Mo ;
Kim, Jae-Hong ;
Chung, Woo-Seong ;
Hong, Jin-Pyo .
ACTA MATERIALIA, 2015, 87 :259-265
[3]  
Behin-Aein B, 2010, NAT NANOTECHNOL, V5, P266, DOI [10.1038/nnano.2010.31, 10.1038/NNANO.2010.31]
[5]   PERPENDICULAR MAGNETIC-ANISOTROPY IN PD/CO THIN-FILM LAYERED STRUCTURES [J].
CARCIA, PF ;
MEINHALDT, AD ;
SUNA, A .
APPLIED PHYSICS LETTERS, 1985, 47 (02) :178-180
[6]   The emergence of spin electronics in data storage [J].
Chappert, Claude ;
Fert, Albert ;
Van Dau, Frederic Nguyen .
NATURE MATERIALS, 2007, 6 (11) :813-823
[7]   Tunable linear magnetoresistance in MgO magnetic tunnel junction sensors using two pinned CoFeB electrodes [J].
Chen, J. Y. ;
Feng, J. F. ;
Coey, J. M. D. .
APPLIED PHYSICS LETTERS, 2012, 100 (14)
[8]   Effect of cap layer thickness on the perpendicular magnetic anisotropy in top MgO/CoFeB/Ta structures [J].
Cheng, Chih-Wei ;
Feng, Wuwei ;
Chern, G. ;
Lee, C. M. ;
Wu, Te-ho .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (03)
[9]   Effect of Ta getter on the quality of MgO tunnel barrier in the polycrystalline CoFeB/MgO/CoFeB magnetic tunnel junction [J].
Choi, Y. S. ;
Nagamine, Y. ;
Tsunekawa, K. ;
Maehara, H. ;
Djayaprawira, D. D. ;
Yuasa, S. ;
Ando, K. .
APPLIED PHYSICS LETTERS, 2007, 90 (01)
[10]   Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction [J].
Cubukcu, Murat ;
Boulle, Olivier ;
Drouard, Marc ;
Garello, Kevin ;
Avci, Can Onur ;
Miron, Ioan Mihai ;
Langer, Juergen ;
Ocker, Berthold ;
Gambardella, Pietro ;
Gaudin, Gilles .
APPLIED PHYSICS LETTERS, 2014, 104 (04)