A Deep Learning Method for Short-Term Dynamic Positioning Load Forecasting in Maritime Microgrids

被引:7
|
作者
Mehrzadi, Mojtaba [1 ]
Terriche, Yacine [1 ]
Su, Chun-Lien [2 ]
Xie, Peilin [1 ]
Bazmohammadi, Najmeh [1 ]
Costa, Matheus N. [3 ]
Liao, Chi-Hsiang [2 ]
Vasquez, Juan C. [1 ]
Guerrero, Josep M. [1 ]
机构
[1] Aalborg Univ, Ctr Res Microgrids CROM, Dept Energy Technol, DK-9220 Aalborg, Denmark
[2] Natl Kaohsiung Univ Sci & Technol, Dept Marine Engn, Kaohsiung 80543, Taiwan
[3] Univ Fed Itajuba, Inst Elect Syst & Energy, BR-1303 Itajuba, MG, Brazil
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 14期
关键词
dynamic positioning; load forecasting; deep learning; operational planning; maritime microgrids; NEURAL-NETWORKS; DESIGN; SYSTEM; CONTROLLER; SHIPS; MANAGEMENT; WIND; VESSELS;
D O I
10.3390/app10144889
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application Application of deep learning techniques to dynamic positioning in maritime microgrids for power management system. The dynamic positioning (DP) system is a progressive technology, which is used in marine vessels and maritime structures. To keep the ship position from displacement in operation mode, its thrusters are used automatically to control and stabilize the position and heading of vessels. Hence, the DP load forecasting is already an essential part of DP vessels, which the DP power demand from the power management system (PMS) for thrusting depends on weather conditions. Furthermore, the PMS is used to control power generation, and prevent power failure, limitation. To perform station keeping of vessels by DPS in environmental changes such as wind, waves, capacity, and reliability of the power generators. Hence, a lack of power may lead to lower DP performance, loss of power, and position, which is called shutdown. Therefore, precise DP power demand prediction for maintaining the vessel position can provide the PMS with sufficient information for better performance in a complex decision-making process for the DP vessel. In this paper, the concept of deep learning techniques is introduced into DPS for DP load forecasting. A Levenberg-Marquardt algorithm based on a nonlinear recurrent neural network is employed in this paper for predicting thrusters' power consumption in sea state variations due to challenges in power generation with the relative degree of accuracy by combining weather parameter dependencies as environmental disturbances. The proposed method evaluates with three traditional forecasting methods through a set of practical real-time DP load and weather parametric data. Numerical analysis has shown that with the proposed method, the future DP load behavior can be predicted more accurately than that obtained from the traditional methods, which greatly assists in operation and planning of power system to maintain system stability, security, reliability, and economics.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Ensemble deep learning method for short-term load forecasting
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 86 - 90
  • [2] Using deep learning for short-term load forecasting
    Nadjib Mohamed Mehdi Bendaoud
    Nadir Farah
    Neural Computing and Applications, 2020, 32 : 15029 - 15041
  • [3] Using deep learning for short-term load forecasting
    Bendaoud, Nadjib Mohamed Mehdi
    Farah, Nadir
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 15029 - 15041
  • [4] A Deep Learning Method for Short-Term Residential Load Forecasting in Smart Grid
    Hong, Ye
    Zhou, Yingjie
    Li, Qibin
    Xu, Wenzheng
    Zheng, Xiujuan
    IEEE ACCESS, 2020, 8 (08): : 55785 - 55797
  • [5] Application of Deep Learning Method in Short-term Load Forecasting of Characteristic Enterprises
    Dou, Yuchen
    Zhang, Xinman
    Wu, Zhihui
    Zhang, Hang
    PROCEEDINGS OF 2018 ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE (AICCC 2018), 2018, : 35 - 40
  • [6] Short-term building electricity load forecasting with a hybrid deep learning method
    Chen, Wenhao
    Rong, Fei
    Lin, Chuan
    ENERGY AND BUILDINGS, 2025, 330
  • [7] Short-term electricity load forecasting of buildings in microgrids
    Chitsaz, Hamed
    Shaker, Hamid
    Zareipour, Hamidreza
    Wood, David
    Amjady, Nima
    ENERGY AND BUILDINGS, 2015, 99 : 50 - 60
  • [8] Short-term load forecasting based on deep learning model
    Kim D.
    Jin-Jo H.
    Park J.-B.
    Roh J.H.
    Kim M.S.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (09): : 1094 - 1099
  • [9] Short-Term Load Forecasting Method Based on Deep Reinforcement Learning for Smart Grid
    Guo, Wei
    Zhang, Kai
    Wei, Xinjie
    Liu, Mei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [10] A dynamic ensemble method for residential short-term load forecasting
    Yu Yang
    Fan Jinfu
    Wang Zhongjie
    Zhu Zheng
    Xu Yukun
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 63 : 75 - 88