High performance piezoelectric vibration energy harvesting by electrical resonant frequency tuning

被引:11
作者
Gibus, David [1 ]
Morel, Adrien [1 ]
Gasnier, Pierre [2 ]
Ameye, Adrien [1 ,2 ]
Badel, Adrien [1 ]
机构
[1] Univ Savoie Mont Blanc, SYMME, F-74000 Annecy, France
[2] Univ Grenoble Alpes, CEA, LETI, MINATEC, F-38000 Grenoble, France
关键词
broadband vibration energy harvesting; quality factor; modeling; electromechanical coupling; piezoelectricity; frequency tuning;
D O I
10.1088/1361-665X/ac9d74
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Extending the frequency bandwidth (BW) of vibration energy harvesters (VEH) that power wireless sensor nodes is of scientific and industrial interest. In this aim, electrical methods to tune the resonant frequency of piezoelectric harvesters with strong electromechanical coupling coefficients have been developed. In this work, we provide guidelines for designing such strongly coupled VEH and present a broadband harvester with high normalized power density (NPD). Through an analytical model, we explain how the coupling coefficient k(2) and the quality factor Q(m) of a cantilever can be jointly maximized, thereby maximizing the figure of merit k(e)(2)Q(m). The proposed cantilever prototype made of PZN-5.5PT and aluminum offers one of the best coupling coefficients among the state-of-the-art (k(2)=49.8%) and a high quality factor (Q(m)=140). Associated to an appropriate tunable electrical interface (short-circuit synchronous electric charge extraction (SECE) in our case), the prototype exhibits a NPD of 12.0 mW g(-2 )cm(-3 )and a frequency BW of 36.0% (56.5 Hz around 157 Hz) at 0.34 m s(-2 )with a tunable electrical interface: the short-circuit SECE. This represents the highest product NPWxBW from state of the art.
引用
收藏
页数:17
相关论文
共 41 条
[1]   Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters [J].
Ahmed-Seddik, B. ;
Despesse, G. ;
Boisseau, S. ;
Defay, E. .
13TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2013), 2013, 476
[2]   A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes [J].
Aktakka, Ethem Erkan ;
Najafi, Khalil .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (09) :2017-2029
[3]   High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations [J].
Aldawood, Ghufran ;
Hieu Tri Nguyen ;
Bardaweel, Hamzeh .
APPLIED ENERGY, 2019, 253
[4]   A piezoelectric bistable plate for nonlinear broadband energy harvesting [J].
Arrieta, A. F. ;
Hagedorn, P. ;
Erturk, A. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2010, 97 (10)
[5]  
Badel A., 2016, Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters. Nonlinearity in Energy Harvesting Systems, P321
[6]   Wideband Piezoelectric Energy Harvester Tuned Through its Electronic Interface Circuit [J].
Badel, Adrien ;
Lefeuvre, Elie .
14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
[7]   Large-bandwidth piezoelectric energy harvesting with frequency-tuning synchronized electric charge extraction [J].
Brenes, A. ;
Morel, A. ;
Gibus, D. ;
Yoo, C. -S. ;
Gasnier, P. ;
Lefeuvre, E. ;
Badel, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2020, 302
[8]  
Cai YF, 2018, ISSCC DIG TECH PAP I, P148, DOI 10.1109/ISSCC.2018.8310227
[9]   Shock reliability enhancement for MEMS vibration energy harvesters with nonlinear air damping as a soft stopper [J].
Chen, Shao-Tuan ;
Du, Sijun ;
Arroyo, Emmanuelle ;
Jia, Yu ;
Seshia, Ashwin .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (10)
[10]   Highly coupled and low frequency vibrational energy harvester using lithium niobate on silicon [J].
Clementi, Giacomo ;
Ouhabaz, Merieme ;
Margueron, Samuel ;
Suarez, Miguel Angel ;
Bassignot, Florent ;
Gauthier-Manuel, Ludovic ;
Belharet, Djaffar ;
Dulmet, Bernard ;
Bartasyte, Ausrine .
APPLIED PHYSICS LETTERS, 2021, 119 (01)