Stochastic FitzHugh-Nagumo equations on networks with impulsive noise

被引:19
作者
Bonaccorsi, Stefano [1 ]
Marinelli, Carlo [2 ]
Ziglio, Giacomo [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38100 Trento, Italy
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
stochastic PDEs; FitzHugh-Nagumo equation; Levy processes; maximal monotone operators;
D O I
10.1214/EJP.v13-532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a system of nonlinear partial differential equations with stochastic dynamical boundary conditions that arises in models of neurophysiology for the diffusion of electrical potentials through a finite network of neurons. Motivated by the discussion in the biological literature, we impose a general diffusion equation on each edge through a generalized version of the FitzHugh-Nagumo model, while the noise acting on the boundary is described by a generalized stochastic Kirchoff law on the nodes. In the abstract framework of matrix operators theory, we rewrite this stochastic boundary value problem as a stochastic evolution equation in infinite dimensions with a power-type nonlinearity, driven by an additive Levy noise. We prove global well-posedness in the mild sense for such stochastic partial differential equation by monotonicity methods.
引用
收藏
页码:1362 / 1379
页数:18
相关论文
共 28 条
[1]   Stochastic integrals and the Levy-Ito decomposition theorem on separable banach spaces [J].
Albeverio, S ;
Rüdiger, B .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (02) :217-253
[2]  
Applebaum D., 2004, CAMBRIDGE STUDIES AD, V93
[3]  
Applebaum D, 2006, LECT NOTES MATH, V1874, P171
[4]  
Barbu V., 1993, ANAL CONTROL NONLINE
[5]  
Bonaccorsi S, 2006, INT FED INFO PROC, V202, P55
[6]  
Brezis H., 1971, P S NONL FUNCT AN, P101
[7]  
Brezis H., 1983, ANAL FONCTIONNELLE
[8]  
Cerrai S., 2001, 2 ORDER PDES FINITE, V1762, DOI [10.1007/b80743, DOI 10.1007/B80743]
[9]  
Chojnowska-Michalik A., 1987, STOCHASTICS, V21, P251, DOI DOI 10.1080/17442508708833459
[10]  
Da Prato G., 2004, Kolmogorov Equations for Stochastic PDEs, DOI 10.1007/978-3-0348-7909-5