Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application

被引:6
作者
Kikianty, Eder [1 ]
Dragomir, S. S. [1 ]
Cerone, P. [1 ]
机构
[1] Victoria Univ, Sch Comp Sci & Math, Melbourne, Vic 8001, Australia
关键词
Ostrowski type inequality; Hermite-Hadamard type inequality; Semi-inner product; Convex function;
D O I
10.1016/j.camwa.2008.03.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An Ostrowski type inequality for convex functions defined on linear spaces is generalised. Some inequalities which improve the Hermite-Hadamard type inequality for convex functions defined on linear spaces are derived using the obtained result. The results in normed linear spaces are used to obtain some inequalities which are related to the given norm and associated semi-inner products, and to prove the sharpness of the constants in those inequalities. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2235 / 2246
页数:12
相关论文
共 24 条
[1]   Ostrowski type inequalities [J].
Anastassiou, GA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (12) :3775-3781
[2]  
[Anonymous], 1991, RADOVI MAT SARAJEVO
[3]   CONVEX FUNCTIONS [J].
BECKENBACH, EF .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (05) :439-460
[4]   On some inequalities arising from Montgomery's identity (Montgomery's identity) [J].
Cerone, P ;
Dragomir, SS .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2003, 5 (04) :341-367
[5]   Three point rules in numerical integration [J].
Cerone, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) :2341-2352
[6]  
Cerone P., 2000, SUT J MATH, V36, P351, DOI [10.55937/sut/991985594, DOI 10.55937/SUT/991985594]
[7]  
Cerone P., 2002, Tamkang J. Math., V33, P109, DOI [10.5556/j.tkjm.33.2002.290, DOI 10.5556/J.TKJM.33.2002.290]
[8]  
CERONE P, 2002, SOOCHOW J MATH, V28, P311
[9]  
Cerone P., 1999, DEMONSTRATIO MATH, V32, P697
[10]  
Dragomir S., 2005, U BEOGRAD PUBL ELEKT, V16, P12, DOI [10.2298 / PETF0516012D, DOI 10.2298/PETF0516012D]