Classical and quantum Lemaitre-Tolman-Bondi model for the nonmarginal case

被引:37
作者
Kiefer, C
Müller-Hill, J
Vaz, C
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[3] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
关键词
D O I
10.1103/PhysRevD.73.044025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend the classical and quantum treatment of the Lemaitre-Tolman-Bondi (LTB) model to the nonmarginal case (defined by the fact that the shells of the dust cloud start with a nonvanishing velocity at infinity). We present the classical canonical formalism and address with particular care the boundary terms in the action. We give the general relation between dust time and Killing time. Employing a lattice regularization, we then derive and discuss for particular factor orderings exact solutions to all quantum constraints.
引用
收藏
页数:13
相关论文
共 25 条
[1]   Quantum geometry and the Schwarzschild singularity [J].
Ashtekar, A ;
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) :391-411
[2]   Nonsingular black holes and degrees of freedom in quantum gravity [J].
Bojowald, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[3]   Semiclassical black hole states and entropy [J].
Brotz, T ;
Kiefer, C .
PHYSICAL REVIEW D, 1997, 55 (04) :2186-2191
[4]   DUST AS A STANDARD OF SPACE AND TIME IN CANONICAL QUANTUM-GRAVITY [J].
BROWN, JD ;
KUCHAR, KV .
PHYSICAL REVIEW D, 1995, 51 (10) :5600-5629
[5]  
HAJICEK P, 2003, QUANTUM GRAVITY THEO
[6]   Quantum resolution of black hole singularities [J].
Husain, V ;
Winkler, O .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (21) :L127-L133
[7]   SPHERICALLY SYMMETRICAL GRAVITY AS A COMPLETELY INTEGRABLE SYSTEM [J].
KASTRUP, HA ;
THIEMANN, T .
NUCLEAR PHYSICS B, 1994, 425 (03) :665-686
[9]  
Kiefer C., 2004, Quantum Gravity, Vvol 124
[10]  
Krasinski A., 1997, INHOMOGENEOUS COSMOL