Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries

被引:211
作者
Zhang, Yongguang [1 ]
Zhao, Yan [1 ]
Yermukhambetova, Assiya [2 ]
Bakenov, Zhumabay [2 ]
Chen, P. [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
[2] Nazarbayev Univ, Sch Engn, Astana 010000, Kazakhstan
基金
加拿大自然科学与工程研究理事会;
关键词
ELECTROCHEMICAL PROPERTIES; SULFUR BATTERY; CARBON NANOTUBES; SPRAY-PYROLYSIS; CYCLE PROPERTY; ELECTRODE; IMPROVEMENT; REDUCTION; OXIDE;
D O I
10.1039/c2ta00105e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured magnesium nickel oxide (Mg0.6Ni0.4O) was synthesized by a self-propagating high temperature synthesis method followed by heat treatment. The particles of the resulting oxide were used as additives to prepare the sulfur/polyacrylonitrile/Mg0.6Ni0.4O (S/PAN/Mg0.6Ni0.4O) composite via wet ballmilling. The SEM observation revealed that the composite morphology was drastically changed by the addition of Mg0.6Ni0.4O, from smooth bulky particles of S/PAN to rough nanostructured agglomerates with two times the increase in the specific surface area, favouring the reactivity of the composite, and a homogeneous component distribution. Cyclic voltammetry, discharge-charge tests and ac impedance spectroscopy have shown improved conductivity and electrochemical properties of the composite by the addition of Mg0.6Ni0.4O, leading to high sulfur utilization and interfacial stabilization in a Li/S cell upon discharge-charge cycling. The cell demonstrated enhanced reversibility, resulting in a discharge capacity of about 1223 mA h g(-1) at the second cycle and retained about 100% of this value over 100 cycles. Furthermore, the S/PAN/Mg0.6Ni0.4O composite cathode exhibited a good rate capability with discharge capacities of 887, 710 and 445 mA h g(-1) at 0.5, 0.7 and 1 C, respectively.
引用
收藏
页码:295 / 301
页数:7
相关论文
共 38 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Battery performance of nanostructured lithium manganese oxide synthesized by ultrasonic spray pyrolysis at elevated temperature [J].
Bakenov, Zhumabay ;
Wakihara, Masataka ;
Taniguchi, Izumi .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (01) :57-62
[3]   Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
JOURNAL OF POWER SOURCES, 2010, 195 (21) :7445-7451
[4]   LiMgxMn1-xPO4/C Cathodes for Lithium Batteries Prepared by a Combination of Spray Pyrolysis with Wet Ballmilling [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A430-A436
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery [J].
Chen, Shu-Ru ;
Zhai, Yun-Pu ;
Xu, Gui-Liang ;
Jiang, Yan-Xia ;
Zhao, Dong-Yuan ;
Li, Jun-Tao ;
Huang, Ling ;
Sun, Shi-Gang .
ELECTROCHIMICA ACTA, 2011, 56 (26) :9549-9555
[7]   Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A796-A799
[8]   Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes [J].
Choi, Jae-Won ;
Kim, Jin-Kyu ;
Cheruvally, Gouri ;
Ahn, Jou-Hyeon ;
Ahn, Hyo-Jun ;
Kim, Ki-Won .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2075-2082
[9]   Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell [J].
Choi, Young-Jin ;
Chung, Young-Dong ;
Baek, Chang-Yong ;
Kim, Ki-Won ;
Ahn, Hyo-Jun ;
Ahn, Jou-Hyeon .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :548-552
[10]   Improvement of cycle property of sulfur electrode for lithium/sulfur battery [J].
Choi, Young-Jin ;
Kim, Ki-Won ;
Ahn, Hyo-Jun ;
Ahn, Jou-Hyeon .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 449 (1-2) :313-316