Library preparation for next generation sequencing: A review of automation strategies

被引:115
作者
Hess, J. F. [1 ]
Kohl, T. A. [2 ,3 ]
Kotrova, M. [4 ]
Roensch, K. [5 ]
Paprotka, T. [5 ]
Mohr, V. [3 ]
Hutzenlaub, T. [1 ,6 ]
Brueggemann, M. [4 ]
Zengerle, R. [1 ,6 ]
Niemann, S. [2 ,3 ]
Paust, N. [1 ,6 ]
机构
[1] Univ Freiburg, Dept Microsyst Engn IMTEK, Lab MEMS Applicat, Freiburg, Germany
[2] Forschungszentrum Borstel, Mol & Expt Mycobacteriol, Borstel, Germany
[3] German Ctr Infect Res, Partner Site Hamburg Lubeck Borstel Riems, Borstel, Germany
[4] Univ Med Ctr Schleswig Holstein, Unit Hermatol Diagnost, Med Dept 2, Kiel, Germany
[5] Eurofins Genom, Constance, Germany
[6] Hahn Schickard, Freiburg, Germany
关键词
PHASE REVERSIBLE IMMOBILIZATION; DROPLET DIGITAL PCR; MYCOBACTERIUM-TUBERCULOSIS; DIAGNOSTIC-TOOL; REAL-TIME; DNA; GENOME; QUANTIFICATION; MICROFLUIDICS; TECHNOLOGIES;
D O I
10.1016/j.biotechadv.2020.107537
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Next generation sequencing is in the process of evolving from a technology used for research purposes to one which is applied in clinical diagnostics. Recently introduced high throughput and benchtop instruments offer fully automated sequencing runs at a lower cost per base and faster assay times. In turn, the complex and cumbersome library preparation, starting with isolated nucleic acids and resulting in amplified and barcoded DNA with sequencing adapters, has been identified as a significant bottleneck. Library preparation protocols usually consist of a multistep process and require costly reagents and substantial hands-on-time. Considerable emphasis will need to be placed on standardisation to ensure robustness and reproducibility. This review presents an overview of the current state of automation of library preparation for next generation sequencing. Major challenges associated with library preparation are outlined and different automation strategies are classified according to their functional principle. Pipetting workstations allow high-throughput processing yet offer limited flexibility, whereas microfluidic solutions offer great potential due to miniaturisation and decreased investment costs. For the emerging field of single cell transcriptomics for example, microfluidics enable singularisation of tens of thousands of cells in nanolitre droplets and barcoding of the RNA to assign each nucleic acid sequence to its cell of origin. Finally, two applications, the characterisation of bacterial pathogens and the sequencing within human immunogenetics, are outlined and benefits of automation are discussed.
引用
收藏
页数:14
相关论文
共 153 条
[51]   Realizing the significance of noncoding functionality in clinical genomics [J].
Gloss, Brian S. ;
Dinger, Marcel E. .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2018, 50 :1-8
[52]   Coming of age: ten years of next-generation sequencing technologies [J].
Goodwin, Sara ;
McPherson, John D. ;
McCombie, W. Richard .
NATURE REVIEWS GENETICS, 2016, 17 (06) :333-351
[53]   Centrifugal microfluidics for biomedical applications [J].
Gorkin, Robert ;
Park, Jiwoon ;
Siegrist, Jonathan ;
Amasia, Mary ;
Lee, Beom Seok ;
Park, Jong-Myeon ;
Kim, Jintae ;
Kim, Hanshin ;
Madou, Marc ;
Cho, Yoon-Kyoung .
LAB ON A CHIP, 2010, 10 (14) :1758-1773
[54]   Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study [J].
Grad, Yonatan H. ;
Kirkcaldy, Robert D. ;
Trees, David ;
Dordel, Janina ;
Harris, Simon R. ;
Goldstein, Edward ;
Weinstock, Hillard ;
Parkhill, Julian ;
Hanage, William P. ;
Bentley, Stephen ;
Lipsitch, Marc .
LANCET INFECTIOUS DISEASES, 2014, 14 (03) :220-226
[55]   DNA PURIFICATION AND ISOLATION USING A SOLID-PHASE [J].
HAWKINS, TL ;
OCONNORMORIN, T ;
ROY, A ;
SANTILLAN, C .
NUCLEIC ACIDS RESEARCH, 1994, 22 (21) :4543-4544
[56]   High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number [J].
Hindson, Benjamin J. ;
Ness, Kevin D. ;
Masquelier, Donald A. ;
Belgrader, Phillip ;
Heredia, Nicholas J. ;
Makarewicz, Anthony J. ;
Bright, Isaac J. ;
Lucero, Michael Y. ;
Hiddessen, Amy L. ;
Legler, Tina C. ;
Kitano, Tyler K. ;
Hodel, Michael R. ;
Petersen, Jonathan F. ;
Wyatt, Paul W. ;
Steenblock, Erin R. ;
Shah, Pallavi H. ;
Bousse, Luc J. ;
Troup, Camille B. ;
Mellen, Jeffrey C. ;
Wittmann, Dean K. ;
Erndt, Nicholas G. ;
Cauley, Thomas H. ;
Koehler, Ryan T. ;
So, Austin P. ;
Dube, Simant ;
Rose, Klint A. ;
Montesclaros, Luz ;
Wang, Shenglong ;
Stumbo, David P. ;
Hodges, Shawn P. ;
Romine, Steven ;
Milanovich, Fred P. ;
White, Helen E. ;
Regan, John F. ;
Karlin-Neumann, George A. ;
Hindson, Christopher M. ;
Saxonov, Serge ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2011, 83 (22) :8604-8610
[57]   Absolute quantification by droplet digital PCR versus analog real-time PCR [J].
Hindson, Christopher M. ;
Chevillet, John R. ;
Briggs, Hilary A. ;
Gallichotte, Emily N. ;
Ruf, Ingrid K. ;
Hindson, Benjamin J. ;
Vessella, Robert L. ;
Tewari, Muneesh .
NATURE METHODS, 2013, 10 (10) :1003-+
[58]   Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool [J].
Hoenen, Thomas ;
Groseth, Allison ;
Rosenke, Kyle ;
Fischer, Robert J. ;
Hoenen, Andreas ;
Judson, Seth D. ;
Martellaro, Cynthia ;
Falzarano, Darryl ;
Marzi, Andrea ;
Squires, R. Burke ;
Wollenberg, Kurt R. ;
de Wit, Emmie ;
Prescott, Joseph ;
Safronetz, David ;
van Doremalen, Neeltje ;
Bushmaker, Trenton ;
Feldmann, Friederike ;
McNally, Kristin ;
Bolay, Fatorma K. ;
Fields, Barry ;
Sealy, Tara ;
Rayfield, Mark ;
Nichol, Stuart T. ;
Zoon, Kathryn C. ;
Massaquoi, Moses ;
Munster, Vincent J. ;
Feldmann, Heinz .
EMERGING INFECTIOUS DISEASES, 2016, 22 (02) :331-334
[59]   Assessing human B cell repertoire diversity and convergence [J].
Imkeller, Katharina ;
Wardemann, Hedda .
IMMUNOLOGICAL REVIEWS, 2018, 284 (01) :51-66
[60]   The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community [J].
Jain, Miten ;
Olsen, Hugh E. ;
Paten, Benedict ;
Akeson, Mark .
GENOME BIOLOGY, 2016, 17