Online Speaker Clustering Using Incremental Learning of an Ergodic Hidden Markov Model

被引:2
|
作者
Koshinaka, Takafumi [1 ,2 ]
Nagatomo, Kentaro [1 ]
Shinoda, Koichi [2 ]
机构
[1] NEC Corp Ltd, Informat & Media Proc Labs, Kawasaki, Kanagawa 2118666, Japan
[2] Tokyo Inst Technol, Dept Comp Sci, Tokyo 1528552, Japan
来源
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS | 2012年 / E95D卷 / 10期
关键词
HMM; model selection; meeting recognition; variational Bayesian learning; ALGORITHM; MIXTURE;
D O I
10.1587/transinf.E95.D.2469
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel online speaker clustering method based on a generative model is proposed. It employs an incremental variant of variational Bayesian learning and provides probabilistic (non-deterministic) decisions for each input utterance, on the basis of the history of preceding utterances. It can be expected to be robust against errors in cluster estimation and the classification of utterances, and hence to be applicable to many real-time applications. Experimental results show that it produces 50% fewer classification errors than does a conventional online method. They also show that it is possible to reduce the number of speech recognition errors by combining the method with unsupervised speaker adaptation.
引用
收藏
页码:2469 / 2478
页数:10
相关论文
共 50 条
  • [1] ONLINE SPEAKER CLUSTERING USING INCREMENTAL LEARNING OF AN ERGODIC HIDDEN MARKOV MODEL
    Koshinaka, Takafumi
    Nagatomo, Kentaro
    Shinoda, Koichi
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 4093 - +
  • [2] UNSUPERVISED SPEAKER ADAPTATION USING ALL-PHONEME ERGODIC HIDDEN MARKOV NETWORK
    MIYAZAWA, Y
    TAKAMI, J
    SAGAYAMA, S
    MATSUNAGA, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1995, E78D (08) : 1044 - 1050
  • [3] Online adaptation of hidden Markov models using incremental estimation algorithms
    Digalakis, VV
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1999, 7 (03): : 253 - 261
  • [4] Speaker verification using Vector Quantization and Hidden Markov Model
    Ilyas, Mohd Zaizu
    Samad, Salina Abdul
    Hussain, Aini
    Ishak, Khairul Anuar
    2007 5TH STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, 2007, : 210 - 214
  • [5] Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden Markov chains
    Kulic, Dana
    Takano, Wataru
    Nakamura, Yoshihiko
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2008, 27 (07): : 761 - 784
  • [6] Incremental Learning of Human Behaviors using Hierarchical Hidden Markov Models
    Kulic, Dana
    Nakamura, Yoshihiko
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [7] Android resource usage risk assessment using hidden Markov model and online learning
    Rashidi, Bahman
    Fung, Carol
    Bertino, Elisa
    COMPUTERS & SECURITY, 2017, 65 : 90 - 107
  • [8] Online learning with hidden Markov models
    Mongillo, Gianluigi
    Deneve, Sophie
    NEURAL COMPUTATION, 2008, 20 (07) : 1706 - 1716
  • [9] Speaker identification using hidden Markov models
    Inman, M
    Danforth, D
    Hangai, S
    Sato, K
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 609 - 612
  • [10] Classification of continuous heart sound signals using the ergodic hidden Markov model
    Chung, Yong-Joo
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2007, 4477 : 563 - 570