Improving database enrichment through ensemble docking

被引:58
作者
Rao, Shashidhar [1 ]
Sanschagrin, Paul C. [1 ]
Greenwood, Jeremy R. [1 ]
Repasky, Matthew P. [1 ]
Sherman, Woody [1 ]
Farid, Ramy [1 ]
机构
[1] Schrodinger Inc, New York, NY 10036 USA
关键词
enrichment; ensemble docking; virtual screening; p38 MAP kinase; glide;
D O I
10.1007/s10822-008-9182-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While it may seem intuitive that using an ensemble of multiple conformations of a receptor in structure-based virtual screening experiments would necessarily yield improved enrichment of actives relative to using just a single receptor, it turns out that at least in the p38 MAP kinase model system studied here, a very large majority of all possible ensembles do not yield improved enrichment of actives. However, there are combinations of receptor structures that do lead to improved enrichment results. We present here a method to select the ensembles that produce the best enrichments that does not rely on knowledge of active compounds or sophisticated analyses of the 3D receptor structures. In the system studied here, the small fraction of ensembles of up to 3 receptors that do yield good enrichments of actives were identified by selecting ensembles that have the best mean GlideScore for the top 1% of the docked ligands in a database screen of actives and drug-like "decoy" ligands. Ensembles of two receptors identified using this mean GlideScore metric generally outperform single receptors, while ensembles of three receptors identified using this metric consistently give optimal enrichment factors in which, for example, 40% of the known actives outrank all the other ligands in the database.
引用
收藏
页码:621 / 627
页数:7
相关论文
共 26 条
[1]   Receptor flexibility in de novo ligand design and docking [J].
Alberts, IL ;
Todorov, NP ;
Dean, PM .
JOURNAL OF MEDICINAL CHEMISTRY, 2005, 48 (21) :6585-6596
[2]   Accounting for loop flexibility during protein-protein docking [J].
Bastard, K ;
Prévost, C ;
Zacharias, M .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (04) :956-969
[3]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[4]   Representing receptor flexibility in ligand docking through relevant normal modes [J].
Cavasotto, CN ;
Kovacs, JA ;
Abagyan, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) :9632-9640
[5]   FlexE: Efficient molecular docking considering protein structure variations [J].
Claussen, H ;
Buning, C ;
Rarey, M ;
Lengauer, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (02) :377-395
[6]   Computational sampling of a cryptic drug binding site in a protein receptor: Explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase [J].
Frembgen-Kesner, Tamara ;
Elcock, Adrian H. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 359 (01) :202-214
[7]   Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy [J].
Friesner, RA ;
Banks, JL ;
Murphy, RB ;
Halgren, TA ;
Klicic, JJ ;
Mainz, DT ;
Repasky, MP ;
Knoll, EH ;
Shelley, M ;
Perry, JK ;
Shaw, DE ;
Francis, P ;
Shenkin, PS .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1739-1749
[8]   Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes [J].
Friesner, Richard A. ;
Murphy, Robert B. ;
Repasky, Matthew P. ;
Frye, Leah L. ;
Greenwood, Jeremy R. ;
Halgren, Thomas A. ;
Sanschagrin, Paul C. ;
Mainz, Daniel T. .
JOURNAL OF MEDICINAL CHEMISTRY, 2006, 49 (21) :6177-6196
[9]   Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening [J].
Halgren, TA ;
Murphy, RB ;
Friesner, RA ;
Beard, HS ;
Frye, LL ;
Pollard, WT ;
Banks, JL .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1750-1759
[10]   Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking [J].
Huang, Sheng-You ;
Zou, Xiaoqin .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 66 (02) :399-421