Effects of parallel ion motion on electromagnetic toroidal ion temperature gradient modes in a fluid model

被引:1
作者
Jarmen, A. [1 ,2 ]
Anderson, J. [3 ]
Malinov, P. [4 ]
机构
[1] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
[2] EURATOM VR Assoc, Gothenburg, Sweden
[3] Chalmers Univ Technol, Dept Earth & Space Sci, S-41296 Gothenburg, Sweden
[4] Univ Sofia, Fac Phys, BU-1126 Sofia, Bulgaria
关键词
FINITE-BETA; BALLOONING MODES; ACOUSTIC MODE; TRANSPORT; STABILITY; SHEAR; ITG;
D O I
10.1063/1.4928374
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Effects of ion dynamics along the background magnetic field have been added to an advanced fluid model which has been developed, tested, and successfully used in transport code applications during the last decades. Introducing electrostatic (phi) and electromagnetic (psi) potentials, a system of two coupled second order differential equations in these potentials is derived. The mode solution is interpreted as a coupling between an Ion Temperature Gradient (ITG) mode and an ion motion driven acoustic wave. The mode may be stabilized by electromagnetic effects and by minimizing the ITG parameter eta(i)(= L-n/L-Ti). Interestingly, the addition of kinetic Landau resonance effects may enhance the eta(i) stabilization. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Short wavelength ion temperature gradient turbulence
    Chowdhury, J.
    Brunner, S.
    Ganesh, R.
    Lapillonne, X.
    Villard, L.
    Jenko, F.
    PHYSICS OF PLASMAS, 2012, 19 (10)
  • [32] Main-Ion Intrinsic Toroidal Rotation Profile Driven by Residual Stress Torque from Ion Temperature Gradient Turbulence in the DIII-D Tokamak
    Grierson, B. A.
    Wang, W. X.
    Ethier, S.
    Staebler, G. M.
    Battaglia, D. J.
    Boedo, J. A.
    deGrassie, J. S.
    Solomon, W. M.
    PHYSICAL REVIEW LETTERS, 2017, 118 (01)
  • [33] Vlasov equation, waves and dispersion relations in fractal dimensions: Landau damping and the toroidal ion temperature gradient instability problem
    El-Nabulsi, Rami Ahmad
    Anukool, Waranont
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [34] Experimental observation of the transition between resistive ballooning modes and ion temperature gradient modes in the edge of the HL-2A tokamak
    Xu, J. Q.
    Xu, Y.
    Peng, X. D.
    Cheng, J.
    Zhong, W. L.
    Jiang, M.
    Yang, Z. C.
    Pan, O.
    Liu, Y.
    Yan, L. W.
    Huang, Z. H.
    Shi, Z. B.
    Xu, M.
    Yang, Q. W.
    Ding, X. T.
    Duan, X. R.
    Liu, Yong
    NUCLEAR FUSION, 2018, 58 (03)
  • [35] Alfvenic ion temperature gradient activities in a weak magnetic shear plasma
    Chen, W.
    Ma, R. R.
    Li, Y. Y.
    Shi, Z. B.
    Du, H. R.
    Jiang, M.
    Yu, L. M.
    Yuan, B. S.
    Li, Y. G.
    Yang, Z. C.
    Shi, P. W.
    Ding, X. T.
    Dong, J. Q.
    Wang, Z. X.
    Liu, Yi.
    Xu, M.
    Xu, Y. H.
    Yang, Q. W.
    Duan, X. R.
    EPL, 2016, 116 (04)
  • [36] The kinetic ion-temperature-gradient-driven instability and its localisation
    Rodriguez, E.
    Zocco, A.
    JOURNAL OF PLASMA PHYSICS, 2025, 91 (01)
  • [37] Coarse-grained gyrokinetics for the critical ion temperature gradient in stellarators
    Roberg-Clark, G. T.
    Plunk, G. G.
    Xanthopoulos, P.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [38] Calculating the linear critical gradient for the ion-temperature-gradient mode in magnetically confined plasmas
    Roberg-Clark, G. T.
    Plunk, G. G.
    Xanthopoulos, P.
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
  • [39] The combined kinetic effects of the ion temperature gradient and the velocity shear of a plasma flow parallel to the magnetic field on the drift-Alfven instabilities
    Mikhailenko, V. V.
    Mikhailenko, V. S.
    Lee, H. J.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [40] Impurity effects on the ion temperature gradient mode in reversed-field pinch plasmas
    Liu, S. F.
    Guo, S. C.
    Zhang, C. L.
    Dong, J. Q.
    Carraro, L.
    Wang, Z. R.
    NUCLEAR FUSION, 2011, 51 (08)