Two-dimensional optomechanical crystal cavity with high quantum cooperativity

被引:81
作者
Ren, Hengjiang [1 ,2 ,3 ]
Matheny, Matthew H. [1 ,2 ,3 ]
MacCabe, Gregory S. [1 ,2 ,3 ]
Luo, Jie [1 ,2 ,3 ]
Pfeifer, Hannes [4 ,5 ]
Mirhosseini, Mohammad [1 ,2 ,3 ]
Painter, Oskar [1 ,2 ,3 ]
机构
[1] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA
[2] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[5] Univ Bonn, Inst Angew Phys, Wegelerstr 8, D-53115 Bonn, Germany
关键词
OSCILLATOR; MICROWAVE; PHOTONS; PHONONS; SILICON; FIELDS; SOUND; LIGHT;
D O I
10.1038/s41467-020-17182-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optomechanical systems offer new opportunities in quantum information processing and quantum sensing. Many solid-state quantum devices operate at millikelvin temperatures-however, it has proven challenging to operate nanoscale optomechanical devices at these ultralow temperatures due to their limited thermal conductance and parasitic optical absorption. Here, we present a two-dimensional optomechanical crystal resonator capable of achieving large cooperativity C and small effective bath occupancy n(b), resulting in a quantum cooperativity C-eff equivalent to C/n(b) > 1 under continuous-wave optical driving. This is realized using a two-dimensional phononic bandgap structure to host the optomechanical cavity, simultaneously isolating the acoustic mode of interest in the bandgap while allowing heat to be removed by phonon modes outside of the bandgap. This achievement paves the way for a variety of applications requiring quantum-coherent optomechanical interactions, such as transducers capable of bi-directional conversion of quantum states between microwave frequency superconducting quantum circuits and optical photons in a fiber optic network.
引用
收藏
页数:10
相关论文
共 64 条
[1]  
Akhieser A, 1939, J PHYS-USSR, V1, P277
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[3]   Resolving the energy levels of a nanomechanical oscillator [J].
Arrangoiz-Arriola, Patricio ;
Wollack, E. Alex ;
Wang, Zhaoyou ;
Pechal, Marek ;
Jiang, Wentao ;
McKenna, Timothy P. ;
Witmer, Jeremy D. ;
Van Laer, Raphael ;
Safavi-Naeini, Amir H. .
NATURE, 2019, 571 (7766) :537-+
[4]   Coupling a Superconducting Quantum Circuit to a Phononic Crystal Defect Cavity [J].
Arrangoiz-Arriola, Patricio ;
Wollack, E. Alex ;
Pechal, Marek ;
Witmer, Jeremy D. ;
Hill, Jeff T. ;
Safavi-Naeini, Amir H. .
PHYSICAL REVIEW X, 2018, 8 (03)
[5]   Engineering interactions between superconducting qubits and phononic nanostructures [J].
Arrangoiz-Arriola, Patricio ;
Safavi-Naeini, Amir H. .
PHYSICAL REVIEW A, 2016, 94 (06)
[6]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[7]   Nonlinear damping and dephasing in nanomechanical systems [J].
Atalaya, Juan ;
Kenny, Thomas W. ;
Roukes, M. L. ;
Dykman, M. I. .
PHYSICAL REVIEW B, 2016, 94 (19)
[8]  
Balram KC, 2016, NAT PHOTONICS, V10, P346, DOI [10.1038/NPHOTON.2016.46, 10.1038/nphoton.2016.46]
[9]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[10]  
BIEGELSEN DK, 1974, PHYS REV LETT, V32, P1196, DOI 10.1103/PhysRevLett.32.1196