Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation

被引:13
作者
Tong, Mingming [1 ]
Duggan, Gregory [1 ]
Liu, Jun [2 ]
Xie, Yu [2 ]
Dodge, Mike [2 ,3 ]
Aucott, Lee [2 ]
Dong, Hongbiao [2 ]
Davidchack, Ruslan L. [2 ]
Dantzig, Jon [4 ,5 ]
Barrera, Olga [6 ]
Cocks, Alan C. F. [6 ]
Kitaguchi, Hiroto [6 ]
Lozano-Perez, Sergio [6 ]
Zhao, Chuangxin [7 ,8 ]
Richardson, Ian [7 ]
Kidess, Anton [7 ]
Kleijn, Chris R. [7 ]
Wen, Shuwen [9 ]
Barnett, Roger [3 ]
Browne, David J. [1 ]
机构
[1] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland
[2] Univ Leicester, Leicester LE1 7RH, Leics, England
[3] TWI Ltd, Cambridge, England
[4] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[5] Univ Illinois, Urbana, IL 61801 USA
[6] Univ Oxford, Oxford, England
[7] Delft Univ Technol, Delft, Netherlands
[8] Xtreme Technol GmbH, D-52074 Aachen, Germany
[9] Tata Steel, Rotherham S60 3AR, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
SOLIDIFICATION; ALLOYS; SIMULATION; GROWTH; FLOW; AL;
D O I
10.1007/s11837-012-0499-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 25 条
[1]   Development of an interatomic potential for phosphorus impurities in α-iron [J].
Ackland, GJ ;
Mendelev, MI ;
Srolovitz, DJ ;
Han, S ;
Barashev, AV .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (27) :S2629-S2642
[2]  
Barenblatt GI, 1962, Adv Appl Mech, V7, P55, DOI [10.1016/S0065-2156(08)70121-2, DOI 10.1016/S0065-2156(08)70121-2]
[3]  
Dodge M.F., 2012, OMAE2012 83402 RIO D
[4]   A combined enthalpy/front tracking method for modelling melting and solidification in laser welding [J].
Duggan, G. ;
Mirihanage, W. U. ;
Tong, M. ;
Browne, D. J. .
MCWASP XIII: INTERNATIONAL CONFERENCE ON MODELING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES, 2012, 33
[5]   An integrated meso-scale numerical model of melting and solidification in laser welding [J].
Duggan, G. ;
Tong, M. ;
Browne, D. J. .
3RD INTERNATIONAL CONFERENCE ON ADVANCES IN SOLIDIFICATION PROCESSES, 2012, 27
[6]  
Echebarria B, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.061604
[7]  
Grong O., 1997, Metallurgical Modelling of Welding
[8]   Multiscale modeling for the prediction of casting defects in investment cast aluminum alloys [J].
Hamilton, RW ;
See, D ;
Butler, S ;
Lee, PD .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 343 (1-2) :290-300
[9]   Phase field model for three-dimensional dendritic growth with fluid flow [J].
Jeong, JH ;
Goldenfeld, N ;
Dantzig, JA .
PHYSICAL REVIEW E, 2001, 64 (04) :14
[10]   Molecular dynamics simulation of the effect of surface roughness and pore on linear friction welding between Ni and Al [J].
Jiao, Zhen ;
Song, Changbao ;
Lin, Tiesong ;
He, Peng .
COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (12) :3385-3389