Software Risk Prediction: Systematic Literature Review on Machine Learning Techniques

被引:3
作者
Mahmud, Mahmudul Hoque [1 ]
Nayan, Md Tanzirul Haque [1 ]
Ashir, Dewan Md Nur Anjum [1 ]
Kabir, Md Alamgir [2 ]
机构
[1] Amer Int Univ Bangladesh, Dept Comp Sci, 408-1 Kuratoli, Dhaka 1229, Bangladesh
[2] Malardalen Univ, Artificial Intelligence & Intelligent Syst Res Gr, Sch Innovat Design & Engn, Hogskoleplan 1, S-72220 Vasteras, Sweden
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 22期
关键词
systematic literature review; software risk; software risk prediction model; machine learning model; review; MODEL; MANAGEMENT; FRAMEWORK; FEATURES;
D O I
10.3390/app122211694
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Software Development Life Cycle (SDLC) includes the phases used to develop software. During the phases of the SDLC, unexpected risks might arise due to a lack of knowledge, control, and time. The consequences are severe if the risks are not addressed in the early phases of SDLC. This study aims to conduct a Systematic Literature Review (SLR) and acquire concise knowledge of Software Risk Prediction (SRP) from the published scientific articles from the year 2007 to 2022. Furthermore, we conducted a qualitative analysis of published articles on SRP. Some of the key findings include: (1) 16 articles are examined in this SLR to represent the outline of SRP; (2) Machine Learning (ML)-based detection models were extremely efficient and significant in terms of performance; (3) Very few research got excellent scores from quality analysis. As part of this SLR, we summarized and consolidated previously published SRP studies to discover the practices from prior research. This SLR will pave the way for further research in SRP and guide both researchers and practitioners.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Using Machine Learning for Systematic Literature Review Case in Point: Agile Software Development
    David, Itzik
    Gelbard, Roy
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 15 (01)
  • [32] Systematic literature review of machine learning based software development effort estimation models
    Wen, Jianfeng
    Li, Shixian
    Lin, Zhiyong
    Hu, Yong
    Huang, Changqin
    INFORMATION AND SOFTWARE TECHNOLOGY, 2012, 54 (01) : 41 - 59
  • [33] OPPORTUNITIES AND CHALLENGES OF MACHINE LEARNING AND DEEP LEARNING TECHNIQUES IN CARDIOVASCULAR DISEASE PREDICTION: A SYSTEMATIC REVIEW
    Omkari, D. Yaso
    Shinde, Snehal B. B.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2023, 31 (02) : 309 - 344
  • [34] Software fault prediction metrics: A systematic literature review
    Radjenovic, Danijel
    Hericko, Marjan
    Torkar, Richard
    Zivkovic, Ales
    INFORMATION AND SOFTWARE TECHNOLOGY, 2013, 55 (08) : 1397 - 1418
  • [35] A Systematic Literature Review on Software Vulnerability Prediction Models
    Bassi, Deepali
    Singh, Hardeep
    IEEE ACCESS, 2023, 11 : 110289 - 110311
  • [36] Machine learning for suicidal ideation identification: A systematic literature review
    Heckler, Wesllei Felipe
    de Carvalho, Juliano Varella
    Barbosa, Jorge Luis Victoria
    COMPUTERS IN HUMAN BEHAVIOR, 2022, 128
  • [37] Systematic literature review: Quantum machine learning and its applications
    Peral-Garcia, David
    Cruz-Benito, Juan
    Garcia-Penalvo, Francisco Jose
    COMPUTER SCIENCE REVIEW, 2024, 51
  • [38] Machine Learning and Marketing: A Systematic Literature Review
    Duarte, Vannessa
    Zuniga-Jara, Sergio
    Contreras, Sergio
    IEEE ACCESS, 2022, 10 : 93273 - 93288
  • [39] A decade of research on machine learning techniques for predicting employee turnover: A systematic literature review
    Al Akasheh, Mariam
    Malik, Esraa Faisal
    Hujran, Omar
    Zaki, Nazar
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [40] Machine Learning for Hypertension Prediction: a Systematic Review
    Silva, Gabriel F. S.
    Fagundes, Thales P.
    Teixeira, Bruno C.
    Chiavegatto Filho, Alexandre D. P.
    CURRENT HYPERTENSION REPORTS, 2022, 24 (11) : 523 - 533