Autocorrelation model-based identification method for ARMA systems in noise

被引:11
作者
Hasan, MK [1 ]
Hossain, NM
Naylor, PA
机构
[1] Univ London Imperial Coll Sci Technol & Med, Commun & Signal Proc Grp, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Bangladesh Univ Engn & Technol, Dept Elect & Elect Engn, Dhaka 1000, Bangladesh
来源
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING | 2005年 / 152卷 / 05期
关键词
D O I
10.1049/ip-vis:20045042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for parameter estimation of minimum-phase autoregressive moving average (ARMA) systems in noise is presented. The ARMA parameters are estimated using a damped sinusoidal model representation of the autocorrelation function of the noise-free ARMA signal. The AR parameters are obtained directly from the estimates of the damped sinusoidal model parameters with guaranteed stability. The MA parameters are estimated using a correlation matching technique. The simulation results show that the proposed method can estimate the ARMA parameters with better accuracy as compared to other reported methods, in particular for low SNRs.
引用
收藏
页码:520 / 526
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2001, BIOMEDICAL SIGNAL PR
[2]  
DEWAELE S, 2000, P EUSIPCO TAPP FINL
[3]   ORDER SELECTION OF AUTOREGRESSIVE MODELS [J].
DJURIC, PM ;
KAY, SM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (11) :2829-2833
[4]  
FATTAH SA, 2002, THESIS BUET
[5]  
HASAN MK, 1994, IEICE T FUND ELECTR, VE77A, P726
[6]  
Hasan MK, 2001, IEICE T FUND ELECTR, VE84A, P577
[7]  
HASAN MK, 2003, IEEE SIGNAL PROCESS, V10, P1303
[8]  
Haykin S., 1992, Adaptive radar detection and estimation
[9]   Linear prediction analysis of speech signals in the presence of white Gaussian noise with unknown variance [J].
Hu, HT .
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1998, 145 (04) :303-308
[10]   ACCURATE AUTOREGRESSIVE SPECTRUM ESTIMATION AT LOW SIGNAL-TO-NOISE RATIO USING A PHASE MATCHING TECHNIQUE [J].
KANAI, H ;
ABE, M ;
KIDO, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (09) :1264-1272