Noncommutative geometry for three-dimensional topological insulators

被引:54
作者
Neupert, Titus [1 ]
Santos, Luiz [2 ]
Ryu, Shinsei [3 ]
Chamon, Claudio [4 ]
Mudry, Christopher [1 ]
机构
[1] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
瑞士国家科学基金会;
关键词
LARGE-N LIMIT; QUANTUM; TRANSITION; SYMMETRY; FLUID;
D O I
10.1103/PhysRevB.86.035125
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We generalize the noncommutative relations obeyed by the guiding centers in the two-dimensional quantum Hall effect to those obeyed by the projected position operators in three-dimensional (3D) topological band insulators. The noncommutativity in 3D space is tied to the integral over the 3D Brillouin zone of a Chern-Simons invariant in momentum-space. We provide an example of a model on the cubic lattice for which the chiral symmetry guarantees a macroscopic number of zero-energy modes that form a perfectly flat band. This lattice model realizes a chiral 3D noncommutative geometry. Finally, we find conditions on the density-density structure factors that lead to a gapped 3D fractional chiral topological insulator within Feynman's single-mode approximation.
引用
收藏
页数:33
相关论文
共 74 条
[1]  
[Anonymous], STAT MECH
[2]   HOMOTOPY AND QUANTIZATION IN CONDENSED MATTER PHYSICS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (01) :51-53
[3]   VISCOSITY OF QUANTUM HALL FLUIDS [J].
AVRON, JE ;
SEILER, R ;
ZOGRAF, PG .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :697-700
[4]  
Bachcall S., 1991, INT J MOD PHYS B, V5, P2735
[5]   THE LARGE-N LIMIT OF EXTENDED CONFORMAL-SYMMETRIES [J].
BAKAS, I .
PHYSICS LETTERS B, 1989, 228 (01) :57-63
[6]   Effective field theory and projective construction for Zk parafermion fractional quantum Hall states [J].
Barkeshli, Maissam ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2010, 81 (15)
[7]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[8]   Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators [J].
Bernevig, B. Andrei ;
Regnault, N. .
PHYSICAL REVIEW B, 2012, 85 (07)
[9]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[10]  
Blount E. I., 1962, SOLID STATE PHYS, V13