Robust control of linear systems with real parametric uncertainty

被引:18
作者
Kose, IE
Jabbari, F [1 ]
机构
[1] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[2] Bogazici Univ, Dept Mech Engn, TR-80815 Bebek, Turkey
基金
美国国家科学基金会;
关键词
quadratic stability; real parameter uncertainty; output feedback; linear matrix inequalities;
D O I
10.1016/S0005-1098(98)00184-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We discuss the problem of robust controller synthesis to provide quadratic stability and a desirable disturbance attenuation level (through an appropriately small L-2 gain) for systems with time-varying, real parametric uncertainty. Through the use of skew-symmetric matrices, the conservatism of standard scaled H-infinity approach is reduced. While the full stale feedback problem is convex, the output feedback problem is not. A set of conditions under which the design of output feedback controllers can be broken into two sequential convex problems is presented. The results are compared with recent results concerning the design of parameter-varying controllers and a simple result regarding the mixed problem (where some of the unknown parameters can be measured on-line) is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:679 / 687
页数:9
相关论文
共 18 条
[1]   A CONVEX CHARACTERIZATION OF GAIN-SCHEDULED H-INFINITY CONTROLLERS [J].
APKARIAN, P ;
GAHINET, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (05) :853-864
[2]   SELF-SCHEDULED H-INFINITY CONTROL OF LINEAR PARAMETER-VARYING SYSTEMS - A DESIGN EXAMPLE [J].
APKARIAN, P ;
GAHINET, P ;
BECKER, G .
AUTOMATICA, 1995, 31 (09) :1251-1261
[3]   ROBUST PERFORMANCE OF LINEAR PARAMETRICALLY VARYING SYSTEMS USING PARAMETRICALLY-DEPENDENT LINEAR FEEDBACK [J].
BECKER, G ;
PACKARD, A .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :205-215
[4]  
BIANNIC JP, 1996, AIAA GUID NAV CONTR
[5]  
Boyd S, 1994, Linear Matrix Inequalities in System and Control Theory, V42, P434
[6]   Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions [J].
Feron, E ;
Apkarian, P ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :1041-1046
[7]   A LINEAR MATRIX INEQUALITY APPROACH TO H-INFINITY CONTROL [J].
GAHINET, P ;
APKARIAN, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (04) :421-448
[8]   Low-order control design for LMI problems using alternating projection methods [J].
Grigoriadis, KM ;
Skelton, RE .
AUTOMATICA, 1996, 32 (08) :1117-1125
[9]   ALL CONTROLLERS FOR THE GENERAL H-INFINITY CONTROL PROBLEM - LMI EXISTENCE CONDITIONS AND STATE-SPACE FORMULAS [J].
IWASAKI, T ;
SKELTON, RE .
AUTOMATICA, 1994, 30 (08) :1307-1317
[10]  
KOSE IE, 1997, THESIS U CALIFORNIA