On the Exact Solutions of the Nonlinear Wave and φ4-Model Equations

被引:2
作者
Kara, A. H. [1 ,2 ]
Bokhari, A. H. [3 ]
Zaman, F. D. [3 ]
机构
[1] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa
[2] Univ Witwatersrand, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, South Africa
[3] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
D O I
10.2991/jnmp.2008.15.s1.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear wave equation with variable long wave velocity and the Gordon-type equations (in particular, the phi 4-model equation) display a range of symmetry generators, inter alia, translations, Lorentz rotations and scaling - all of which are related to conservation laws. We do a study of the symmetries of a large class with a view to reduction and solution of these equations which has been analysed, to some extent, using other techniques giving rise to a different class of solutions.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 10 条
  • [1] Baikov V.A., 1996, CRC Handbook of Lie Group Analysis of Differential Equations, V3
  • [2] Bluman G., 1986, SYMMETRIES DIFFERENT
  • [3] Kink-antikink collisions in the φ4 equation:: The n-bounce resonance and the separatrix map
    Goodman, RH
    Habermam, R
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (04): : 1195 - 1228
  • [4] Kara A. H., 1994, LIE GROUPS THEIR APP, V1, P137
  • [5] Nonlinear evolution-type equations and their exact solutions using inverse variational methods
    Kara, AH
    Khalique, CM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (21): : 4629 - 4636
  • [6] KARA AH, 1994, LIE GROUPS APPL, V2, P27
  • [7] Nayfeh A. H., 1981, Introduction to Perturbation Techniques
  • [8] Nayfeh A. H., 1979, Perturbation Methods
  • [9] Olver PJ., 1986, Applications of Lie groups to differential equations, DOI 10.1007/978-1-4684-0274-2
  • [10] Travelling kinks in discrete φ4 models
    Oxtoby, OF
    Pelinovsky, DE
    Barashenkov, IV
    [J]. NONLINEARITY, 2006, 19 (01) : 217 - 235