Electrochemical Analysis for Enhancing Interface Layer of Spinel Li4Ti5O12: p-Toluenesulfonyl Isocyanate as Electrolyte Additive

被引:61
作者
Wang, Ren-Heng [1 ]
Li, Xin-Hai [1 ]
Wang, Zhi-Xing [1 ]
Guo, Hua-Jun [1 ]
He, Zhen-Jiang [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
关键词
lithium-ion battery; spinel lithium titanate; elevated temperature property; nonaqueous electrolyte; electrolyte additive; solid electrolyte interphase layer; p-toluenesulfonyl isocyanate; RATE-CAPABILITY; ANODE MATERIALS; LITHIUM; PERFORMANCE; INTERCALATION; CARBONATE; SEI; SPECTROSCOPY; REACTIVITY; BATTERIES;
D O I
10.1021/acsami.5b07047
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An electrolyte additive, p-toluenesulfonyl isocyanate (PTSI), is evaluated in our work to overcome the poor cycling performance of spinel lithium titanate (Li4Ti5O12) lithium-ion batteries. We find that the cycling performance of a Li/Li4Ti5O12 cell with 0.5 wt % PTSI after 400 cycles is obviously improved. Remarkably, we also find that a solid electrolyte interface (SET) film is formed about 1.2 V, which has higher potential to generate a stable SEI film than do carbonate solvents in the voltage range of 3.0-0 V. The stable SET film derived from PTSI can effectively suppress the decomposition of electrolyte, HF generation, interfacial reaction, and LiF formation upon cycling. These observations are explained in terms of PTSI including SO3. The S=0 groups can delocalize the nitrogen core, which acts as the weak base site to hinder the reactivity of PF5. Hence, HF generation and LiF formation are suppressed.
引用
收藏
页码:23605 / 23614
页数:10
相关论文
共 43 条
[1]   Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel [J].
Aldon, L ;
Kubiak, P ;
Womes, M ;
Jumas, JC ;
Olivier-Fourcade, J ;
Tirado, JL ;
Corredor, JI ;
Vicente, CP .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5721-5725
[2]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[3]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Titanium-Based Anode Materials for Safe Lithium-Ion Batteries [J].
Chen, Zonghai ;
Belharouak, Ilias ;
Sun, Y-K ;
Amine, Khalil .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :959-969
[6]   General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Yan, Jing ;
Zhu, Guan-Nan ;
Luo, Jia-Yan ;
Wang, Cong-Xiao ;
Xia, Yong-Yao .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (03) :595-602
[7]   Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy:: Experimental and theoretical study [J].
Dedryvère, R ;
Gireaud, L ;
Grugeon, S ;
Laruelle, S ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :15868-15875
[8]   Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery [J].
Dedryvere, R. ;
Foix, D. ;
Franger, S. ;
Patoux, S. ;
Daniel, L. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (24) :10999-11008
[9]   An Organic Coprecipitation Route to Synthesize High Voltage LiNi0.5Mn1.5O4 [J].
Feng, Jijun ;
Huang, Zhipeng ;
Guo, Chao ;
Chernova, Natasha A. ;
Upreti, Shailesh ;
Whittingham, M. Stanley .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (20) :10227-10232
[10]   Ac impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite [J].
Funabiki, A ;
Inaba, M ;
Ogumi, Z .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :227-231