Some results on multiplicities for SL(n)

被引:13
作者
Lapid, EM [1 ]
机构
[1] Weizmann Inst Sci, Fac Math Sci, IL-76100 Rehovot, Israel
关键词
D O I
10.1007/BF02773481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the multiplicity and the global multiplicity of an L-packet of SL(n), unifying lack of multiplicity one and non-rigidity of L-packets. The first examples of these phenomena were given by Blasius. Giving a heuristic approach to its calculation, based on Langlands' Tannakian formalism, we conjecture that the global multiplicity is bounded in terms of n only. We justify the heuristics in a special case of L-packets attached to Hecke characters on an Abelian or p-extension. We then focus on L-packets lifted from endoscopic tori. A full description of their global multiplicities is given in the case where n is prime.
引用
收藏
页码:157 / 186
页数:30
相关论文
共 20 条
[1]  
Arthur James, 1991, L FUNCTIONS ARITHMET, V153, P1
[2]   ON MULTIPLICITIES FOR SL(N) [J].
BLASIUS, D .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 88 (1-3) :237-251
[3]  
Borovik A., 1989, ALGEBRA LOGIKA+, V28, P249
[4]  
Guralnick Robert M., 1993, CONTEMP MATH, V153, P21
[5]   AUTOMORPHIC INDUCTION FOR GL(N) (OVER LOCAL NON-ARCHIMEDEAN FIELDS) [J].
HENNIART, G ;
HERB, R .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (01) :131-192
[6]   ON THE LOCAL LANGLANDS CONJECTURE FOR GL(N) - THE CYCLIC CASE [J].
HENNIART, G .
ANNALS OF MATHEMATICS, 1986, 123 (01) :145-203
[7]  
Iwahori N., 1964, J FS U TOKYO 1, V10, P129
[8]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC-FORMS .2. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (04) :777-815
[9]  
KAZHDAN D, 1984, LECT NOTES MATH, V1041, P209
[10]   STABLE TRACE FORMULA - CUSPIDAL TEMPERED TERMS [J].
KOTTWITZ, RE .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :611-650