Estimation and Partition of Heritability in Human Populations Using Whole-Genome Analysis Methods

被引:129
|
作者
Vinkhuyzen, Anna A. E. [1 ]
Wray, Naomi R. [1 ]
Yang, Jian [1 ,2 ]
Goddard, Michael E. [3 ,4 ]
Visscher, Peter M. [1 ,2 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Diamantina Inst, Translat Res Inst, Brisbane, Qld 4072, Australia
[3] Univ Melbourne, Dept Food & Agr Syst, Parkville, Vic 3053, Australia
[4] Dept Primary Ind, Biosci Res Div, Bundoora, Vic 3001, Australia
来源
ANNUAL REVIEW OF GENETICS, VOL 47 | 2013年 / 47卷
基金
澳大利亚研究理事会; 美国国家卫生研究院;
关键词
quantitative traits; whole-genome methods; additive genetic variance; genomic relationship; mixed linear model; genetic architecture; COMMON SNPS EXPLAIN; BONE-MINERAL DENSITY; WIDE ASSOCIATION; LINKAGE DISEQUILIBRIUM; MISSING HERITABILITY; GENETIC-VARIATION; LARGE PROPORTION; COMPLEX TRAITS; SIB-PAIR; TWIN;
D O I
10.1146/annurev-genet-111212-133258
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. However, major questions remain unanswered: How much phenotypic variation is genetic; how much of the genetic variation is additive and can be explained by fitting all genetic variants simultaneously in one model, and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLMs) to estimate genetic variation. In all methods, genetic variation is estimated from the relationship between close or distant relatives on the basis of pedigree information and/or single nucleotide polymorphisms (SNPs). We discuss theory, estimation procedures, bias, and precision of each method and review recent advances in the dissection of genetic variation of complex traits in human populations. By using genome-wide data, it is now established that SNPs in total account for far more of the genetic variation than the statistically highly significant SNPs that have been detected in genome-wide association studies. All SNPs together, however, do not account for all of the genetic variance estimated by pedigree-based methods. We explain possible reasons for this remaining "missing heritability."
引用
收藏
页码:75 / +
页数:26
相关论文
共 50 条
  • [41] Detection of candidate genes affecting milk production traits in sheep using whole-genome sequencing analysis
    Rezvannejad, Elham
    Nanaei, Hojjat Asadollahpour
    Esmailizadeh, Ali
    VETERINARY MEDICINE AND SCIENCE, 2022, 8 (03) : 1197 - 1204
  • [42] Rare variants analysis using penalization methods for whole genome sequence data
    Yazdani, Akram
    Yazdani, Azam
    Boerwinkle, Eric
    BMC BIOINFORMATICS, 2015, 16
  • [43] Comprehensive Characterization of Human Genome Variation by High Coverage Whole-Genome Sequencing of Forty Four Caucasians
    Shen, Hui
    Li, Jian
    Zhang, Jigang
    Xu, Chao
    Jiang, Yan
    Wu, Zikai
    Zhao, Fuping
    Liao, Li
    Chen, Jun
    Lin, Yong
    Tian, Qing
    Papasian, Christopher J.
    Deng, Hong-Wen
    PLOS ONE, 2013, 8 (04):
  • [44] Whole-genome sequence diversity and association analysis of 198 soybean accessions in mini-core collections
    Kajiya-Kanegae, Hiromi
    Nagasaki, Hideki
    Kaga, Akito
    Hirano, Ko
    Ogiso-Tanaka, Eri
    Matsuoka, Makoto
    Ishimori, Motoyuki
    Ishimoto, Masao
    Hashiguchi, Masatsugu
    Tanaka, Hidenori
    Akashi, Ryo
    Isobe, Sachiko
    Iwata, Hiroyoshi
    DNA RESEARCH, 2021, 28 (01)
  • [45] SEQSpark: A Complete Analysis Tool for Large-Scale Rare Variant Association Studies Using Whole-Genome and Exome Sequence Data
    Zhang, Di
    Zhao, Linhai
    Li, Biao
    He, Zongxiao
    Wang, Gao T.
    Liu, Dajiang J.
    Leal, Suzanne M.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (01) : 115 - 122
  • [46] Whole-genome Linkage Analysis and Sequence Analysis of Candidate Loci in Familial Breast Cancer
    Marikkannu, Rajeshwari
    Aravidis, Christos
    Rantala, Johanna
    Picelli, Simone
    Adamovic, Tatjana
    Keihas, Markku
    Liu, Tao
    Kontham, Vinaykumar
    Nilsson, Daniel
    Lindblom, Annika
    ANTICANCER RESEARCH, 2015, 35 (06) : 3155 - 3165
  • [47] Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations
    Pulit, Sara L.
    de With, Sera A. J.
    de Bakker, Paul I. W.
    GENETIC EPIDEMIOLOGY, 2017, 41 (02) : 145 - 151
  • [48] Whole-genome association analysis of treatment response in obsessive-compulsive disorder
    Qin, H.
    Samuels, J. F.
    Wang, Y.
    Zhu, Y.
    Grados, M. A.
    Riddle, M. A.
    Greenberg, B. D.
    Knowles, J. A.
    Fyer, A. J.
    McCracken, J. T.
    Murphy, D. L.
    Rasmussen, S. A.
    Cullen, B. A.
    Piacentini, J.
    Geller, D.
    Stewart, S. E.
    Pauls, D.
    Bienvenu, O. J.
    Goes, F. S.
    Maher, B.
    Pulver, A. E.
    Valle, D.
    Lange, C.
    Mattheisen, M.
    McLaughlin, N. C.
    Liang, K-Y
    Nurmi, E. L.
    Askland, K. D.
    Nestadt, G.
    Shugart, Y. Y.
    MOLECULAR PSYCHIATRY, 2016, 21 (02) : 270 - 276
  • [49] Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks
    Medugorac, Ivica
    Graf, Alexander
    Grohs, Cecile
    Rothammer, Sophie
    Zagdsuren, Yondon
    Gladyr, Elena
    Zinovieva, Natalia
    Barbieri, Johanna
    Seichter, Doris
    Russ, Ingolf
    Eggen, Andre
    Hellenthal, Garrett
    Brem, Gottfried
    Blum, Helmut
    Krebs, Stefan
    Capitan, Aurelien
    NATURE GENETICS, 2017, 49 (03) : 470 - 475
  • [50] Rapid variance components-based method for whole-genome association analysis
    Svishcheva, Gulnara R.
    Axenovich, Tatiana I.
    Belonogova, Nadezhda M.
    van Duijn, Cornelia M.
    Aulchenko, Yurii S.
    NATURE GENETICS, 2012, 44 (10) : 1166 - +