Preparation of Reduced Graphene Oxide:ZnO Hybrid Cathode Interlayer Using In Situ Thermal Reduction/Annealing for Interconnecting Nanostructure and Its Effect on Organic Solar Cell

被引:46
作者
Zheng, Ding [1 ]
Huang, Wei [1 ]
Fan, Pu [1 ]
Zheng, Yifan [1 ]
Huang, Jiang [1 ]
Yu, Junsheng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Informat, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
organic solar cell; spray coating; reduced graphene oxide; zinc oxide; hybrid cathode interlayer; in situ thermal reduction; in situ thermal annealing; ELECTRON-TRANSPORT LAYER; HIGH-PERFORMANCE; FUNCTIONALIZED GRAPHENE; SOLVOTHERMAL REDUCTION; PHOTOVOLTAIC CELLS; GRAPHITE OXIDE; RAMAN-SPECTRA; BUFFER LAYERS; EXTRACTION; EFFICIENCY;
D O I
10.1021/acsami.6b15411
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel hybrid cathode interlayer (CIL) consisting of reduced graphene oxide and zinc oxide (ZnO) is realized in the inverted organic solar cells (OSCs). A dual nozzle spray coating system and facile one-step in situ thermal reduction/annealing (ITR/ITA) method are introduced to precisely control the components of the CIL, assemble ZnO with graphene oxide, and reduce graphene oxide into in situ thermal reduced graphene oxide (IT-RGO), simultaneously. The ZnO:IT-RGO hybrid CIL shows high electric conductivity, interconnecting nanostructure, and matched energy level, which leads to a significant enhancement in the power conversion efficiency from 6.16% to 8.04% for PTB7:PC71BM and from 8.02% to 9.49% for PTB7-Th:PC71BM-based OSCs, respectively. This newly developed spray-coated ZnO:IT-RGO hybrid CIL based on one-step ITR/ITA treatment has the high potential to provide a facile pathway to fabricate the large-scale, fast fabrication, and high performance OSCs.
引用
收藏
页码:4898 / 4907
页数:10
相关论文
共 70 条
  • [1] [Anonymous], CHEM COMMUN
  • [2] Evaluation of solution-processed reduced graphene oxide films as transparent conductors
    Becerril, Hdctor A.
    Mao, Jie
    Liu, Zunfeng
    Stoltenberg, Randall M.
    Bao, Zhenan
    Chen, Yongsheng
    [J]. ACS NANO, 2008, 2 (03) : 463 - 470
  • [3] Hybrid Graphene-Metal Oxide Solution Processed Electron Transport Layers for Large Area High-Performance Organic Photovoltaics
    Beliatis, Michail J.
    Gandhi, Keyur K.
    Rozanski, Lynn J.
    Rhodes, Rhys
    McCafferty, Liam
    Alenezi, Mohammad R.
    Alshammari, Abdullah S.
    Mills, Christopher A.
    Jayawardena, K. D. G. Imalka
    Henley, Simon J.
    Silva, S. Ravi P.
    [J]. ADVANCED MATERIALS, 2014, 26 (13) : 2078 - 2083
  • [4] Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells
    Bisquert, J
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) : 5360 - 5364
  • [5] Substrate-free gas-phase synthesis of graphene sheets
    Dato, Albert
    Radmilovic, Velimir
    Lee, Zonghoon
    Phillips, Jonathan
    Frenklach, Michael
    [J]. NANO LETTERS, 2008, 8 (07) : 2012 - 2016
  • [6] Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells
    Ding, Zicheng
    Miao, Zhongshuo
    Xie, Zhiyuan
    Liu, Jun
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (07) : 2413 - 2418
  • [7] ZnO/Graphene Quantum Dot Solid-State Solar Cell
    Dutta, Mrinal
    Sarkar, Sanjit
    Ghosh, Tushar
    Basak, Durga
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (38) : 20127 - 20131
  • [8] Interpretation of Raman spectra of disordered and amorphous carbon
    Ferrari, AC
    Robertson, J
    [J]. PHYSICAL REVIEW B, 2000, 61 (20) : 14095 - 14107
  • [9] Spatially resolved raman spectroscopy of single- and few-layer graphene
    Graf, D.
    Molitor, F.
    Ensslin, K.
    Stampfer, C.
    Jungen, A.
    Hierold, C.
    Wirtz, L.
    [J]. NANO LETTERS, 2007, 7 (02) : 238 - 242
  • [10] A Review on the Development of the Inverted Polymer Solar Cell Architecture
    Hau, Steven K.
    Yip, Hin-Lap
    Jen, Alex K. -Y.
    [J]. POLYMER REVIEWS, 2010, 50 (04) : 474 - 510