Generalized Approximate Message Passing for Massive MIMO mmWave Channel Estimation With Laplacian Prior

被引:60
作者
Bellili, Faouzi [1 ]
Sohrabi, Foad [1 ]
Yu, Wei [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Massive MIMO; mmWave; channel estimation; minimum mean-squared error (MMSE) estimator; generalized approximate message passing (GAMP); WAVE PROPAGATION MEASUREMENTS; DECOMPOSITION; SYSTEMS; MODELS;
D O I
10.1109/TCOMM.2019.2892719
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper tackles the problem of millimeter-wave (mmWave) channel estimation in massive MIMO communication systems. A new Bayes-optimal channel estimator is derived using recent advances in the approximate belief propagation Bayesian inference paradigm. By leveraging the inherent sparsity of the mmWave MIMO channel in the angular domain, we recast the underlying channel estimation problem into that of reconstructing a compressible signal from a set of noisy linear measurements. Then, the generalized approximate message passing (GAMP) algorithm is used to find the entries of the unknown mmWave MIMO channel matrix. Unlike all the existing works on the same topic, we model the angular-domain channel coefficients by Laplacian distributed random variables. Furthermore, we establish the closed-form expressions for the various statistical quantities that need to be updated iteratively by GAMP. To render the proposed algorithm fully automated, we also develop an expectation-maximization (EM) based procedure that can be easily embedded within GAMP's iteration loop in order to learn all the unknown parameters of the underlying Bayesian inference problem. The computer simulations show that the proposed combined EM-GAMP algorithm under a Laplacian prior exhibits improvements both in terms of channel estimation accuracy, achievable rate, and computational complexity, as compared to the Gaussian mixture prior that has been advocated in the recent literature. In addition, it is found that the Laplacian prior speeds up the convergence time of GAMP over the entire signal-to-noise ratio range.
引用
收藏
页码:3205 / 3219
页数:15
相关论文
共 43 条
[1]   Millimeter Wave Channel Modeling and Cellular Capacity Evaluation [J].
Akdeniz, Mustafa Riza ;
Liu, Yuanpeng ;
Samimi, Mathew K. ;
Sun, Shu ;
Rangan, Sundeep ;
Rappaport, Theodore S. ;
Erkip, Elza .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1164-1179
[2]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[3]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[4]  
[Anonymous], THESIS
[5]  
[Anonymous], 2008, P 25 INT C MACH LEAR
[6]   Bayesian Compressive Sensing Using Laplace Priors [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (01) :53-63
[7]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[8]   Five Disruptive Technology Directions for 5G [J].
Boccardi, Federico ;
Heath, Robert W., Jr. ;
Lozano, Angel ;
Marzetta, Thomas L. ;
Popovski, Petar .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :74-80
[9]  
Caltagirone F, 2014, IEEE INT SYMP INFO, P1812, DOI 10.1109/ISIT.2014.6875146
[10]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61