Brill-Noether theory of curves on Enriques surfaces I: the positive cone and gonality

被引:17
|
作者
Knutsen, Andreas Leopold [2 ]
Lopez, Angelo Felice [1 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
LINEAR-SYSTEMS; PROJECTIVE MODELS; K3; BUNDLES; PENCILS;
D O I
10.1007/s00209-008-0349-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of linear series on curves lying on an Enriques surface and general in their complete linear system. Using a method that works also below the Bogomolov-Reider range, we compute, in all cases, the gonality of such curves. We also give a new result about the positive cone of line bundles on an Enriques surface and we show how this relates to the gonality.
引用
收藏
页码:659 / 690
页数:32
相关论文
共 14 条
  • [1] Brill-Noether theory of curves on Enriques surfaces II: the Clifford index
    Knutsen, Andreas Leopold
    Lopez, Angelo Felice
    MANUSCRIPTA MATHEMATICA, 2015, 147 (1-2) : 193 - 237
  • [2] Brill-Noether theory for curves of a fixed gonality
    Jensen, David
    Ranganathan, Dhruv
    FORUM OF MATHEMATICS PI, 2021, 9
  • [3] Components of Brill-Noether Loci for Curves with Fixed Gonality
    Cook-Powell, Kaelin
    Jensen, David
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (01) : 19 - 45
  • [4] Brill-Noether generality of binary curves
    He, Xiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 787 - 807
  • [5] Curves on Brill-Noether special K3 surfaces
    Haburcak, Richard
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (12) : 4497 - 4509
  • [6] Algebraic and combinatorial Brill-Noether theory
    Caporaso, Lucia
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 69 - 85
  • [7] Brill-Noether theory of maximally symmetric graphs
    Leake, Timothy
    Ranganathan, Dhruv
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 : 115 - 125
  • [8] HIGHER RANK BRILL-NOETHER THEORY ON SECTIONS OF K3 SURFACES
    Farkas, Gavril
    Ortega, Angela
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
  • [9] Global Brill-Noether theory over the Hurwitz space
    Larson, Eric
    Larson, Hannah
    Vogt, Isabel
    GEOMETRY & TOPOLOGY, 2025, 29 (01) : 193 - 257
  • [10] Ulrich sheaves and higher-rank Brill-Noether theory
    Kulkarni, Rajesh S.
    Mustopa, Yusuf
    Shipman, Ian
    JOURNAL OF ALGEBRA, 2017, 474 : 166 - 179