Brill-Noether theory of curves on Enriques surfaces I: the positive cone and gonality

被引:17
作者
Knutsen, Andreas Leopold [2 ]
Lopez, Angelo Felice [1 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
LINEAR-SYSTEMS; PROJECTIVE MODELS; K3; BUNDLES; PENCILS;
D O I
10.1007/s00209-008-0349-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of linear series on curves lying on an Enriques surface and general in their complete linear system. Using a method that works also below the Bogomolov-Reider range, we compute, in all cases, the gonality of such curves. We also give a new result about the positive cone of line bundles on an Enriques surface and we show how this relates to the gonality.
引用
收藏
页码:659 / 690
页数:32
相关论文
共 32 条
[1]  
[Anonymous], 1984, COMPACT COMPLEX SURF
[2]  
ARBARELLO E, 1985, GEOMETRY ALGEGRAIC C, V1
[3]  
BERTRAM A, 1989, LECT NOTES MATH, V1479, P15
[4]  
Castelnuovo G., 1890, Rend. Circ. Mat. Palermo., V4, P73
[5]  
CILIBERTO C, 1995, J REINE ANGEW MATH, V460, P15
[6]  
Cossec F., 1989, Progress in Mathematics, V76, px+397
[7]   ON THE PICARD GROUP OF ENRIQUES SURFACES [J].
COSSEC, FR .
MATHEMATISCHE ANNALEN, 1985, 271 (04) :577-600
[8]   PROJECTIVE MODELS OF ENRIQUES SURFACES [J].
COSSEC, FR .
MATHEMATISCHE ANNALEN, 1983, 265 (03) :283-334
[9]  
DONAGI R, 1989, J DIFFER GEOM, V29, P49
[10]  
Enriques F., 1895, MATH ANN, V46, P179