Verification of deterministic solar forecasts

被引:166
作者
Yang, Dazhi [1 ]
Alessandrini, Stefano [2 ]
Antonanzas, Javier [3 ]
Antonanzas-Torres, Fernando [3 ]
Badescu, Viorel [4 ]
Beyer, Hans Georg [5 ]
Blaga, Robert [6 ]
Boland, John [7 ]
Bright, Jamie M. [8 ]
Coimbra, Carlos F. M. [9 ]
David, Mathieu [10 ]
Frimane, Azeddine [11 ]
Gueymard, Christian A. [12 ]
Hong, Tao [13 ]
Kay, Merlinde J. [14 ]
Killinger, Sven [15 ]
Kleissl, Jan [9 ]
Lauret, Philippe [10 ]
Lorenz, Elke [15 ]
van der Meer, Dennis [16 ]
Paulescu, Marius [6 ]
Perez, Richard [17 ]
Perpinan-Lamigueiro, Oscar [18 ]
Peters, Ian Marius [19 ]
Reikard, Gordon [20 ]
Renne, David [21 ]
Saint-Drenan, Yves-Marie [22 ]
Shuai, Yong [23 ]
Urraca, Ruben [3 ]
Verbois, Hadrien [8 ]
Vignola, Frank [24 ]
Voyant, Cyril [10 ]
Zhang, Jie [25 ]
机构
[1] Agcy Sci Technol & Res, Singapore Inst Mfg Technol, Singapore, Singapore
[2] Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA
[3] Univ La Rioja, Dept Mech Engn, Logrono, Spain
[4] Univ Politehn Bucuresti, Candida Oancea Inst, Bucharest, Romania
[5] Univ Faroe Isl, Fac Sci & Technol, Torshavn, Faroe Islands
[6] West Univ Timisoara, Fac Phys, Timisoara, Romania
[7] Univ South Australia, Ctr Ind & Appl Math, Mawson Lakes, SA, Australia
[8] Natl Univ Singapore, Solar Energy Res Inst Singapore, Singapore, Singapore
[9] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92103 USA
[10] Univ La Reunion, PIMENT Lab, St Clotilde, Reunion, France
[11] Ibn Tofail Univ, Fac Sci, Kenitra, Morocco
[12] Solar Consulting Serv, Colebrook, NH USA
[13] Univ North Carolina Charlotte, Dept Syst Engn & Engn Management, Charlotte, NC USA
[14] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW, Australia
[15] Fraunhofer Inst Solar Energy Syst ISE, Freiburg, Germany
[16] Uppsala Univ, Dept Civil & Ind Engn, Uppsala, Sweden
[17] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA
[18] Univ Politecn Madrid, Sch Engn & Ind Design, Madrid, Spain
[19] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[20] US Cellular, Stat Dept, Chicago, IL USA
[21] Dave Renne Renewables, Boulder, CO USA
[22] PSL Res Univ, MINES ParisTech, Sophia Antipolis, France
[23] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin, Heilongjiang, Peoples R China
[24] Univ Oregon, Mat Sci Inst, Eugene, OR 97403 USA
[25] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
Solar forecasting; Measure-oriented forecast verification; Distribution-oriented forecast verification; Skill score; Combination of climatology and persistence; CLEAR-SKY IRRADIANCE; MEAN-SQUARE ERROR; GLOBAL HORIZONTAL IRRADIANCE; POWER FLUCTUATIONS; QUALITY-CONTROL; RADIATION DATA; PERFORMANCE; PREDICTION; MODELS; PERSISTENCE;
D O I
10.1016/j.solener.2020.04.019
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing sub-domain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy-Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows-with appropriate caveats-comparison of forecasts made using different models, across different locations and time periods.
引用
收藏
页码:20 / 37
页数:18
相关论文
共 92 条
[1]   Comparative study of PV power forecast using parametric and nonparametric PV models [J].
Almeida, Marcelo Pinho ;
Munoz, Mikel ;
de la Parra, Inigo ;
Perpinan, Oscar .
SOLAR ENERGY, 2017, 155 :854-866
[2]  
[Anonymous], 2011, ASME 2011 5 INT C EN, DOI DOI 10.1115/ES2011-54519
[3]   The value of day-ahead forecasting for photovoltaics in the Spanish electricity market [J].
Antonanzas, J. ;
Pozo-Vazquez, D. ;
Fernandez-Jimenez, L. A. ;
Martinez-de-Pison, F. J. .
SOLAR ENERGY, 2017, 158 :140-146
[4]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[5]   Clear sky solar irradiance models: A review of seventy models [J].
Antonanzas-Torres, F. ;
Urraca, R. ;
Polo, J. ;
Perpinan-Lamigueiro, O. ;
Escobar, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 107 :374-387
[6]  
Armstrong JS, 2001, INT SER OPER RES MAN, V30, P443
[7]  
Beyer H.G., 2009, 038665 BENCHM RAD PR
[8]   The impact of temporal smoothing on the accuracy of separation models [J].
Blaga, Robert .
SOLAR ENERGY, 2019, 191 :371-381
[9]   A current perspective on the accuracy of incoming solar energy forecasting [J].
Blaga, Robert ;
Sabadus, Andreea ;
Stefu, Nicoleta ;
Dughir, Ciprian ;
Paulescu, Marius ;
Badescu, Viorel .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2019, 70 :119-144
[10]   Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature [J].
Chai, T. ;
Draxler, R. R. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) :1247-1250