On benchmarking functions for genetic algorithms

被引:346
作者
Digalakis, JG [1 ]
Margaritis, KG [1 ]
机构
[1] Univ Macedonia, Thessaloniki 54046, Greece
关键词
genetic algorithms; benchmarking functions; population size; mutation rate; pseudo-random number generation;
D O I
10.1080/00207160108805080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents experimental results on the major benchmarking functions used for performance evaluation of Genetic Algorithms (GAs). Parameters considered include the effect of population size, crossover probability, mutation rate and pseudorandom generator. The general computational behavior of two basic GAs models, the Generational Replacement Model (GRM) and the Steady State Replacement Model (SSRM) is evaluated.
引用
收藏
页码:481 / 506
页数:26
相关论文
共 22 条
  • [1] BAECK, 1991, INT WISSENSCHAFTLICH, P1
  • [2] BAECK T, 1996, EVOLUTIONARY ALGORIT, P138
  • [3] CARUANA RA, 1989, P 11 INT JOINT C ART, P750
  • [4] De Jong K. A., 1975, An analysis of the bechavior of a class of genetic adaptive systems
  • [5] ESHELMAN LJ, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P10
  • [6] FORD RW, 1997, HIGH PERFORMANCE SOF
  • [7] OPTIMIZATION OF CONTROL PARAMETERS FOR GENETIC ALGORITHMS
    GREFENSTETTE, JJ
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1986, 16 (01): : 122 - 128
  • [8] JENKINS R, 1997, ISAAC 1 CRYPTOGRAPHI
  • [9] LAZAUSKAS L, 1997, OPTIMIZATION TEST FU
  • [10] LEVINE D, 1996, MATH COMPUTER SCI DI, P19