Representation type of finite quiver Hecke algebras of type A2l(2)

被引:14
作者
Ariki, Susumu [1 ]
Park, Euiyong [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Seoul, Dept Math, Seoul 130743, South Korea
关键词
Representation theory; Quiver Hecke algebras; Representation type; Shifted Young diagrams; QUANTUM AFFINE ALGEBRAS; STABLE EQUIVALENCE; CRYSTAL BASES; Q-ANALOG; MODULES; BLOCKS;
D O I
10.1016/j.jalgebra.2013.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study cyclotomic quiver Hecke algebras R-Lambda 0(beta) in type A(2l)((2)), where Lambda(0) is the fundamental weight. The algebras are natural A(2l)((2))-type analogue of Iwahori Hecke algebras associated with the symmetric group, from the viewpoint of the Fock space theory developed by the first author and his collaborators. We give a formula for the dimension of the algebra, and a simple criterion to tell the representation type. The criterion is a natural generalization of Erdmann and Nakano's for the lwahori-Hecke algebras. Except for the examples coming from cyclotomic Hecke algebras, no results of these kind existed for cyclotomic quiver Hecke algebras, and our results are the first instances beyond the case of cyclotomic Hecke algebras. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:457 / 488
页数:32
相关论文
共 45 条
[1]  
[Anonymous], 2002, Grad. Stud. Math.
[2]  
Ariki S., 1999, LONDON MATH SOC LECT, V290, P1
[3]  
ARIKI S, 2007, SUGAKU EXPOSITIONS, V20, P15
[4]   Construction of Irreducible Representations over Khovanov-Lauda-Rouquier Algebras of Finite Classical Type [J].
Benkart, Georgia ;
Kang, Seok-Jin ;
Oh, Se-jin ;
Park, Euiyong .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (05) :1312-1366
[5]  
Brundan J., 2001, Represent. Theory, V5, P317
[6]   Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :451-484
[7]   Derived equivalences for symmetric groups and sl2-categorification [J].
Chuang, Joseph ;
Rouquier, Raphael .
ANNALS OF MATHEMATICS, 2008, 167 (01) :245-298
[8]  
Date E., 1982, Publ. Res. Inst. Math. Sci., V18, P1077, DOI DOI 10.2977/PRIMS/1195183297
[9]  
DIPPER R, 1987, P LOND MATH SOC, V54, P57
[10]   Representation type of Hecke algebras of type A [J].
Erdmann, K ;
Nakano, DK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (01) :275-285