Reconfiguration control of satellite formation using online quasi-linearization iteration and symplectic discretization

被引:16
作者
Cheng, Long [1 ]
Wen, Hao [1 ]
Jin, Dongping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Satellite formation; Reconfiguration; Receding horizon control; Quasi-linearization; Symplectic Discretization; MODEL-PREDICTIVE CONTROL; LOW-THRUST; SPACECRAFT FORMATION; FEEDBACK-CONTROL; SYSTEMS; OPTIMIZATION; STATE;
D O I
10.1016/j.ast.2020.106348
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper focuses on the reconfiguration control problem of formation flying spacecraft via low thrust continuous propulsion. A nonlinear receding horizon control (NRHC) scheme for performance optimization and constraint enforcement is presented. The nonlinear optimal control (NOC) problem underlying the receding horizon control scheme is transcribed into a sequence of linear optimal control (LOC) problems by exploiting an online quasi-linearization strategy. Hence, only a LOC must be solved in each sampling interval, thereby significantly reducing the computational cost. It differs from conventional receding horizon control schemes that require solving a NOC problem in each sampling interval. Moreover, the numerical solution of the LOC problem is obtained using a structure-preserving symplectic algorithm that is capable of maintaining a high degree of accuracy while simultaneously improving computation efficiency. Finally, a numerical case study is presented to illustrate the effectiveness and superiority of the proposed control approach. (c) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:11
相关论文
共 37 条
[1]  
Arnold V.I., 1989, Mathematical Methods of Classical Mechanics
[2]  
Bandyopadhyay S., 2015, 53 AIAA AER SCI M KI
[3]   Spaceborne Autonomous Formation-Flying Experiment on the PRISMA Mission [J].
D'Amico, S. ;
Ardaens, J. -S. ;
Larsson, R. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (03) :834-850
[4]   Model Predictive Control in Aerospace Systems: Current State and Opportunities [J].
Eren, Utku ;
Prach, Anna ;
Kocer, Basaran Bahadir ;
Rakovic, Sasa V. ;
Kayacan, Erdal ;
Acikmese, Behcet .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (07) :1541-1566
[5]   Magnetospheric Multiscale Science Mission Profile and Operations [J].
Fuselier, S. A. ;
Lewis, W. S. ;
Schiff, C. ;
Ergun, R. ;
Burch, J. L. ;
Petrinec, S. M. ;
Trattner, K. J. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :77-103
[6]   Receding horizon control for multiplicative noise stochastic systems with input delay [J].
Gao, Rong ;
Xu, Juanjuan ;
Zhang, Huanshui .
AUTOMATICA, 2017, 81 :390-396
[7]   Formation flying within a constellation of nano-satellites: The QB50 mission [J].
Gill, E. ;
Sundaramoorthy, P. ;
Bouwmeester, J. ;
Zandbergen, B. ;
Reinhard, R. .
ACTA ASTRONAUTICA, 2013, 82 (01) :110-117
[8]   An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range [J].
Houska, Boris ;
Ferreau, Hans Joachim ;
Diehl, Moritz .
AUTOMATICA, 2011, 47 (10) :2279-2285
[9]  
Huang J, 2014, CHIN CONTR CONF, P7685, DOI 10.1109/ChiCC.2014.6896281
[10]   Dual-quaternion based distributed coordination control of six-DOF spacecraft formation with collision avoidance [J].
Huang, Xu ;
Yan, Ye ;
Zhou, Yang ;
Yang, Yueneng .
AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 67 :443-455