Embedded nanograting-based waveplates for polarization control in integrated photonic circuits

被引:14
作者
Lammers, Kim [1 ]
Ehrhardt, Max [2 ]
Malendevych, Teodor [1 ,3 ]
Xu, Xiaoyu [1 ,4 ]
Vetter, Christian [1 ,5 ]
Alberucci, Alessandro [1 ]
Szameit, Alexander [2 ]
Nolte, Stefan [1 ,6 ]
机构
[1] Friedrich Schiller Univ Jena, Abbe Sch Photon, Inst Appl Phys, Albert Einstein Str 15, D-07745 Jena, Germany
[2] Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18059 Rostock, Germany
[3] Univ Cent Florida, Laser & Plasma Lab, Coll Opt & Photon, 4304 Scorpius St, Orlando, FL 32186 USA
[4] Tech Univ Denmark, DTU Fotonik, Orsteds Pl, DK-2800 Lyngby, Denmark
[5] Univ Bourgogne Franche Comte, FEMTO ST Inst, CNRS, 15B Ave Montboucons, F-25030 Besancon, France
[6] Fraunhofer Inst Appl Opt & Precis Engn, Albert Einstein Str 7, D-07745 Jena, Germany
基金
欧盟地平线“2020”;
关键词
OPTICAL WAVE-GUIDES; BULK FUSED-SILICA; INDUCED BIREFRINGENCE; DIRECTIONAL COUPLER; STRESS-DISTRIBUTION; LIGHT-SCATTERING; FEMTOSECOND; GLASS; FABRICATION;
D O I
10.1364/OME.9.002560
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Femtosecond laser direct writing (FLDW) enables precise three-dimensional structuring of transparent host materials such as fused silica. With this technique, reliable integrated optical circuits can be written, which are also a possible candidate for future quantum technologies. We demonstrate the manufacturing of integrated waveplates with arbitrary orientations and various phase delays by combining embedded birefringent nanograting structures and FLDW waveguides in fused silica glass. These waveplates can be used both for classical applications and for quantum gates. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2560 / 2572
页数:13
相关论文
共 50 条
[1]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/NNANO.2015.186, 10.1038/nnano.2015.186]
[2]   Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments [J].
Barz, Stefanie .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (08)
[3]   Broadband anisotropy of femtosecond laser induced nanogratings in fused silica [J].
Beresna, M. ;
Gecevicius, M. ;
Lancry, M. ;
Poumellec, B. ;
Kazansky, P. G. .
APPLIED PHYSICS LETTERS, 2013, 103 (13)
[4]   Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited] [J].
Beresna, Martynas ;
Gecevicius, Mindaugas ;
Kazansky, Peter G. .
OPTICAL MATERIALS EXPRESS, 2011, 1 (04) :783-795
[5]   Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass [J].
Beresna, Martynas ;
Gecevicius, Mindaugas ;
Kazansky, Peter G. ;
Gertus, Titas .
APPLIED PHYSICS LETTERS, 2011, 98 (20)
[6]  
Boykin P. O., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P486, DOI 10.1109/SFFCS.1999.814621
[7]   Intrinsic birefringence in calcium fluoride and barium fluoride [J].
Burnett, JH ;
Levine, ZH ;
Shirley, EL .
PHYSICAL REVIEW B, 2001, 64 (24)
[8]   Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing [J].
Cerullo, G ;
Osellame, R ;
Taccheo, S ;
Marangoni, M ;
Polli, D ;
Ramponi, R ;
Laporta, P ;
De Silvestri, S .
OPTICS LETTERS, 2002, 27 (21) :1938-1940
[9]   Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation [J].
Champion, Audrey ;
Beresna, Martynas ;
Kazansky, Peter ;
Bellouard, Yves .
OPTICS EXPRESS, 2013, 21 (21) :24942-24951
[10]   Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses [J].
Chan, JW ;
Huser, TR ;
Risbud, SH ;
Krol, DM .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 76 (03) :367-372