UNCERTAINTY QUANTIFICATION OF DEEP NEURAL NETWORK-BASED TURBULENCE MODEL FOR REACTOR TRANSIENT ANALYSIS

被引:0
|
作者
Liu, Yang [1 ]
Hu, Rui [1 ]
Balaprakash, Prasanna [2 ]
机构
[1] Argonne Natl Lab, Nucl Sci & Engn Div, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
来源
PROCEEDINGS OF THE 2021 ASME VERIFICATION AND VALIDATION SYMPOSIUM (VVS2021) | 2021年
关键词
deep learning; turbulence model; Monte Carlo dropout; deep ensemble; Bayesian neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) have demonstrated good performance in learning highly non-linear relationships in large datasets, thus have been considered as a promising surrogate modeling tool for parametric partial differential equations (PDEs). On the other hand, quantifying the predictive uncertainty in DNNs is still a challenging problem. The Bayesian neural network (BNN), a sophisticated method assuming the weights of the DNNs follow certain uncertainty distributions, is considered as a state-of-the-art method for the UQ of DNNs. However, the method is too computationally expensive to be used in complicated DNN architectures. In this work, we utilized two more methods for the UQ of complicated DNNs, i.e. Monte Carlo dropout and deep ensemble. Both methods are computationally efficient and scalable compared to BNN. We applied these two methods to a densely connected convolutional network, which is developed and trained as a coarse-mesh turbulence closure relation for reactor safety analysis. In comparison, the corresponding BNN with the same architecture is also developed and trained. The computational cost and uncertainty evaluation performance of these three UQ methods are comprehensively investigated. It is found that the deep ensemble method is able to produce reasonable uncertainty estimates with good scalability and relatively low computational cost compared to BNN.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] INTEGRATING STATISTICAL UNCERTAINTY INTO NEURAL NETWORK-BASED SPEECH ENHANCEMENT
    Fang, Huajian
    Peer, Tal
    Wermter, Stefan
    Gerkmann, Timo
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 386 - 390
  • [42] DeepSL: Deep Neural Network-based Similarity Learning
    Tourad M.C.
    Abdelmounaim A.
    Dhleima M.
    Telmoud C.A.A.
    Lachgar M.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (03): : 1394 - 1401
  • [43] A survey on deep neural network-based image captioning
    Liu, Xiaoxiao
    Xu, Qingyang
    Wang, Ning
    VISUAL COMPUTER, 2019, 35 (03): : 445 - 470
  • [44] Neural Network-Based Method for Orbit Uncertainty Propagation and Estimation
    Zhou, Xingyu
    Qiao, Dong
    Li, Xiangyu
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (01) : 1176 - 1193
  • [45] Deep neural network-based relation extraction: an overview
    Hailin Wang
    Ke Qin
    Rufai Yusuf Zakari
    Guoming Lu
    Jin Yin
    Neural Computing and Applications, 2022, 34 : 4781 - 4801
  • [46] DeepSL: Deep Neural Network-based Similarity Learning
    Tourad, Mohamedou Cheikh
    Abdelmounaim, Abdali
    Dhleima, Mohamed
    Telmoud, Cheikh Abdelkader Ahmed
    Lachgar, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 1394 - 1401
  • [47] Analytics of Deep Neural Network-Based Background Subtraction
    Minematsu, Tsubasa
    Shimada, Atsushi
    Uchiyama, Hideaki
    Taniguchi, Rin-ichiro
    JOURNAL OF IMAGING, 2018, 4 (06)
  • [48] A survey on deep neural network-based image captioning
    Xiaoxiao Liu
    Qingyang Xu
    Ning Wang
    The Visual Computer, 2019, 35 : 445 - 470
  • [49] Deep neural network-based underwater OFDM receiver
    Zhang, Jing
    Cao, Yu
    Han, Guangyao
    Fu, Xiaomei
    IET COMMUNICATIONS, 2019, 13 (13) : 1998 - 2002
  • [50] Analytic Deep Neural Network-Based Robot Control
    Nguyen, Huu-Thiet
    Cheah, Chien Chern
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (04) : 2176 - 2184