Modeling in front of a plasma profile of a set of traveling wave antenna sections in view of the ion cyclotron range of frequencies heating of the fusion reactor

被引:8
作者
Messiaen, A. [1 ]
Ragona, R. [1 ,2 ]
机构
[1] Royal Mil Acad, Lab Plasma Phys, LPP ERM KMS, BE-1000 Brussels, Belgium
[2] Univ Ghent, Appl Phys Dept, B-9000 Ghent, Belgium
关键词
ICRH; traveling wave antenna; DEMO; resonant ring; TWA; ICRF; fusion reactor; CURRENT DRIVE;
D O I
10.1088/1361-6587/aaf8bd
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An upgraded version of the fast semi-analytical code ANTITER-II is used to model the traveling wave antenna (TWA) sections of any arbitrary number of radiating straps facing a low coupling plasma profile with their feeding system. The code computes the Y, Z and S matrices of the antenna array from which the performances of the TWA sections and of their feeding system are deduced as a function of the geometrical parameters of the TWA. The model incorporates the feeding of each section by a resonant ring circuit that re-circulates its output power. The cases of straps grounded at one of their ends (L grounding) or in their center (T grounding) are also compared. This model is extended to a number n(B) of TWA sections of n(str), straps with arbitrary positions in the y, z plane (i.e. machine wall). The full matrices of the resulting array of n(str)n(B) straps are derived and connected to the resonant ring circuits feeding each TWA sections to incorporate the feeding in the model. Examples of toroidal and/or poloidal set of sections with T or L grounding and symmetric or asymmetric k(//) spectra are analyzed. First conclusions for the design of a set of TWA sections for the reactor are already drawn.
引用
收藏
页数:23
相关论文
共 17 条
[1]   Low power density ion cyclotron arrays for fusion reactors [J].
Bosia, Giuseppe .
FUSION ENGINEERING AND DESIGN, 2015, 92 :8-15
[2]  
Carpentier S, 2010, ITERD33Y59M
[3]  
deGrassie J.S, 1992, P 17 S FUS TECHN ROM, P457
[4]   Heating & current drive efficiencies, TBR and RAMI considerations for DEMO [J].
Franke, T. ;
Agostinetti, P. ;
Avramidis, K. ;
Bader, A. ;
Bachmann, Ch. ;
Biel, W. ;
Bolzonella, T. ;
Ciattaglia, S. ;
Coleman, M. ;
Cismondi, F. ;
Granucci, G. ;
Grossetti, G. ;
Jelonnek, J. ;
Jenkins, I. ;
Kalsey, M. ;
Kembleton, R. ;
Mantel, N. ;
Noterdaeme, J. -M. ;
Rispoli, N. ;
Simonin, A. ;
Sonato, P. ;
Tran, M. Q. ;
Vincenzi, P. ;
Wenninger, R. .
FUSION ENGINEERING AND DESIGN, 2017, 123 :495-499
[5]  
Hunter I C, 2001, IET ELECTROMAGNETIC, V48
[6]  
Messiaen Andre, 2017, EPJ Web of Conferences, V157, DOI 10.1051/epjconf/201715703033
[7]   Contribution of LPP/ERM-KMS to the modern developments of ICRH antenna systems [J].
Messiaen, A. ;
Ongena, J. ;
Dumortier, P. ;
Durodie, F. ;
Louche, F. ;
Ragona, R. ;
Vervier, M. .
FUSION ENGINEERING AND DESIGN, 2016, 112 :21-35
[8]   Performance of the ITER ICRH system as expected from TOPICA and ANTITER II modelling [J].
Messiaen, A. ;
Koch, R. ;
Weynants, R. R. ;
Dumortier, P. ;
Louche, F. ;
Maggiora, R. ;
Milanesio, D. .
NUCLEAR FUSION, 2010, 50 (02)
[9]  
Messiaen A., 2016, 43 EPS C PLASM PHY A, V40A
[10]  
Messiaen A, 1984, P 4 INT S HEAT TOR P, V1, P315