Estimating and Testing Vaccine Sieve Effects Using Machine Learning

被引:16
作者
Benkeser, David [1 ]
Gilbert, Peter B. [2 ,3 ,4 ]
Carone, Marco [3 ,4 ]
机构
[1] Emory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, 1124 Columbia St, Seattle, WA 98104 USA
[3] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[4] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
Competing risks; Dependent censoring; HIV; Machine learning; Malaria; Targeted minimum loss-based estimation; Vaccine; INFERENCE; FAILURE; TRIALS; RISK; PREDICTION;
D O I
10.1080/01621459.2018.1529594
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When available, vaccines are an effective means of disease prevention. Unfortunately, efficacious vaccines have not yet been developed for several major infectious diseases, including HIV and malaria. Vaccine sieve analysis studies whether and how the efficacy of a vaccine varies with the genetics of the pathogen of interest, which can guide subsequent vaccine development and deployment. In sieve analyses, the effect of the vaccine on the cumulative incidence corresponding to each of several possible genotypes is often assessed within a competing risks framework. In the context of clinical trials, the estimators employed in these analyses generally do not account for covariates, even though the latter may be predictive of the study endpoint or censoring. Motivated by two recent preventive vaccine efficacy trials for HIV and malaria, we develop new methodology for vaccine sieve analysis. Our approach offers improved validity and efficiency relative to existing approaches by allowing covariate adjustment through ensemble machine learning. We derive results that indicate how to perform statistical inference using our estimators. Our analysis of the HIV and malaria trials shows markedly increased precision-up to doubled efficiency in both trials-under more plausible assumptions compared with standard methodology. Our findings provide greater evidence for vaccine sieve effects in both trials. for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
引用
收藏
页码:1038 / 1049
页数:12
相关论文
共 41 条
[1]   NONPARAMETRIC INFERENCE FOR A FAMILY OF COUNTING PROCESSES [J].
AALEN, O .
ANNALS OF STATISTICS, 1978, 6 (04) :701-726
[2]  
AALEN OO, 1978, SCAND J STAT, V5, P141
[3]   First Results of Phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Children [J].
Agnandji, Selidji Todagbe ;
Lell, Bertrand ;
Soulanoudjingar, Solange Solmeheim ;
Fernandes, Jose Francisco ;
Abossolo, Beatrice Peggy ;
Conzelmann, Cornelia ;
Methogo, Barbara Gaelle Nfono Ondo ;
Doucka, Yannick ;
Flamen, Arnaud ;
Mordmueller, Benjamin ;
Issifou, Saadou ;
Kremsner, Peter Gottfried ;
Sacarlal, Jahit ;
Aide, Pedro ;
Lanaspa, Miguel ;
Aponte, John J. ;
Nhamuave, Arlindo ;
Quelhas, Diana ;
Bassat, Quique ;
Mandjate, Sofia ;
Macete, Eusebio ;
Alonso, Pedro ;
Abdulla, Salim ;
Salim, Nahya ;
Juma, Omar ;
Shomari, Mwanajaa ;
Shubis, Kafuruki ;
Machera, Francisca ;
Hamad, Ali Said ;
Minja, Rose ;
Mpina, Maxmillian ;
Mtoro, Ali ;
Sykes, Alma ;
Ahmed, Saumu ;
Urassa, Alwisa Martin ;
Ali, Ali Mohammed ;
Mwangoka, Grace ;
Tanner, Marcel ;
Tinto, Halidou ;
D'Alessandro, Umberto ;
Sorgho, Hermann ;
Valea, Innocent ;
Tahita, Marc Christian ;
Kabore, William ;
Ouedraogo, Sayouba ;
Sandrine, Yara ;
Guiguemde, Robert Tinga ;
Ouedraogo, Jean Bosco ;
Hamel, Mary J. ;
Kariuki, Simon .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (20) :1863-1875
[4]  
[Anonymous], 2016, Wkly Epidemiol Rec, V91, P33
[5]  
[Anonymous], 2003, SPR S STAT
[6]  
[Anonymous], 2004, Stat Appl Genet Mol Biol, DOI [DOI 10.2202/1544-6115.1041, 10.2202/1544-6115.1042]
[7]   Doubly robust estimation in missing data and causal inference models [J].
Bang, H .
BIOMETRICS, 2005, 61 (04) :962-972
[8]  
Bembom O, 2007, STAT APPL GENET MOL, V6
[9]   ESTIMATES OF ABSOLUTE CAUSE-SPECIFIC RISK IN COHORT STUDIES [J].
BENICHOU, J ;
GAIL, MH .
BIOMETRICS, 1990, 46 (03) :813-826
[10]  
Bickel P. J., 1997, EFFICIENT ADAPTIVE E