The Twisting Bifurcations of Double Homoclinic Loops with Resonant Eigenvalues

被引:0
作者
Li, Xiaodong [1 ]
Zhang, Weipeng [1 ]
Geng, Fengjie [2 ]
Huang, Jicai [3 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
REVERSIBLE-SYSTEMS; LORENZ ATTRACTORS; LIMIT-CYCLES; ORBIT-FLIP; SADDLE;
D O I
10.1155/2013/152518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The twisting bifurcations of double homoclinic loops with resonant eigenvalues are investigated in four-dimensional systems. The coexistence or noncoexistence of large 1-homoclinic orbit and large 1-periodic orbit near double homoclinic loops is given. The existence or nonexistence of saddle-node bifurcation surfaces is obtained. Finally, the complete bifurcation diagrams and bifurcation curves are also given under different cases. Moreover, the methods adopted in this paper can be extended to a higher dimensional system.
引用
收藏
页数:11
相关论文
共 32 条