SHALOM'S PROPERTY HFD AND EXTENSIONS BY Z OF LOCALLY FINITE GROUPS

被引:4
作者
Brieussel, Jeremie [1 ]
Zheng, Tianyi [2 ]
机构
[1] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, F-34095 Montpellier, France
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
关键词
COHOMOLOGY;
D O I
10.1007/s11856-018-1818-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every finitely generated extension by Z of a locally normally finite group has Shalom's property HFD. The statement is no longer true without the normality assumption. This permits to answer some questions of Shalom, Erschler-Ozawa and Kozma. We also obtain a Neumann-Neumann embedding result that any countable locally finite group embeds into a two-generated amenable group with property H-FD.
引用
收藏
页码:45 / 70
页数:26
相关论文
共 19 条
[1]  
[Anonymous], ARXIV151008040
[2]  
Benjamini I, 2017, NEW YORK J MATH, V23, P833
[3]   RANDOM-WALKS ON THE AFFINE GROUP OF LOCAL-FIELDS AND OF HOMOGENEOUS TREES [J].
CARTWRIGHT, DI ;
KAIMANOVICH, VA ;
WOESS, W .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (04) :1243-1288
[4]   Finite-dimensional representations constructed from random walks [J].
Erschler, Anna ;
Ozawa, Narutaka .
COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) :555-586
[5]   THE MAYER-VIETORIS SEQUENCE FOR GRAPHS OF GROUPS, PROPERTY (T), AND THE FIRST l2-BETTI NUMBER [J].
Fernos, Talia ;
Valette, Alain .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2017, 19 (02) :251-274
[6]   Reduced 1-cohomology and relative property (T) [J].
Fernos, Talia ;
Valette, Alain ;
Martin, Florian .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) :613-626
[7]   Mixing, malnormal subgroups and cohomology in degree one [J].
Gournay, Antoine .
GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (04) :1371-1416
[8]  
Gromov M, 2008, GROUP GEOM DYNAM, V2, P499
[9]  
GUICHARDET A, 1972, B SCI MATH, V96, P305
[10]  
Hall P., 1959, J LOND MATH SOC, V34, P305, DOI 10.1112/jlms/s1-34.3.305