Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model

被引:3
作者
Soliman, Amira [1 ]
Chang, Jose R. [1 ,2 ]
Etminani, Kobra [1 ]
Byttner, Stefan [1 ]
Davidsson, Anette [3 ]
Martinez-Sanchis, Begona [4 ]
Camacho, Valle [5 ]
Bauckneht, Matteo [6 ]
Stegeran, Roxana [7 ]
Ressner, Marcus [8 ]
Agudelo-Cifuentes, Marc [4 ]
Chincarini, Andrea [9 ]
Brendel, Matthias [10 ]
Rominger, Axel [11 ]
Bruffaerts, Rose [26 ]
Vandenberghe, Rik [12 ,13 ]
Kramberger, Milica G. [14 ]
Trost, Maja [14 ,15 ]
Nicastro, Nicolas [16 ]
Frisoni, Giovanni B. [17 ]
Lemstra, Afina W. [18 ]
van Berckel, Bart N. M. [19 ]
Pilotto, Andrea [20 ]
Padovani, Alessandro [6 ]
Morbelli, Silvia [21 ]
Aarsland, Dag [22 ,27 ]
Nobili, Flavio [22 ]
Garibotto, Valentina [23 ,24 ]
Ochoa-Figueroa, Miguel [3 ,7 ,25 ]
机构
[1] Halmstad Univ, Ctr Appl Intelligent Syst Res CAISR, Halmstad, Sweden
[2] Natl Cheng Kung Univ Tainan, Taipei, Taiwan
[3] Inst Med & Hlth Sci, Dept Clin Physiol, Linkoping, Sweden
[4] La Fe Univ Hosp, Dept Nucl Med, Med Imaging Area, Valencia, Spain
[5] Univ Autonoma Barcelona, Serv Med Nucl, Hosp Santa Creu & St Pau, Barcelona, Spain
[6] IRCCS Osped Policlin San Martino, Nucl Med Unit, Genoa, Italy
[7] Linkoping Univ Hosp, Dept Diagnost Radiol, Linkoping, Sweden
[8] Linkoping Univ Hosp, Dept Med Phys, Linkoping, Sweden
[9] Natl Inst Nucl Phys INFN, Genoa Sect, Genoa, Italy
[10] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Nucl Med, Munich, Germany
[11] Univ Hosp Bern, Dept Nucl Med, Inselspital, Bern, Switzerland
[12] KU, Lab Cognit Neurol, Dept Neurosci, Leuven, Belgium
[13] Univ Hosp Leuven, Neurol Dept, Leuven, Belgium
[14] Univ Med Ctr, Dept Neurol, Ljubljana, Slovenia
[15] Univ Ljubljana, Fac Med, Ljubljana, Slovenia
[16] Geneva Univ Hosp, Dept Clin Neurosci, Geneva, Switzerland
[17] Univ Hosp, Dept Psychiat, LANVIE Lab Neuroimagerie Vieillissement, Geneva, Switzerland
[18] VU Med Ctr Alzheimer Ctr, Amsterdam, Netherlands
[19] Vrije Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam Neurosci, Amsterdam, Netherlands
[20] Univ Brescia, Dept Clin & Expt Sci, Neurol Unit, Brescia, Italy
[21] Stavanger Univ Hosp, Ctr Age Related Med SESAM, Stavanger, Norway
[22] Univ Genoa, Dept Neurosci DINOGMI, Genoa, Italy
[23] Univ Geneva, Univ Hosp, Div Nucl Med & Mol Imaging, Geneva, Switzerland
[24] Univ Geneva, NIMTLab, Geneva, Switzerland
[25] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
[26] Univ Antwerp, Dept Biomed Sci, Antwerp, Belgium
[27] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Old Age Psychiat, London, England
基金
瑞士国家科学基金会;
关键词
Convolution Neural Networks; Transfer Learning; Brain Neurodegenerative Disorders; Medical Image Classification; LEWY BODIES; DEMENTIA; PREVALENCE; DIAGNOSIS; BRAIN;
D O I
10.1186/s12911-022-02054-7
中图分类号
R-058 [];
学科分类号
摘要
Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. Results: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. Conclusions: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones.
引用
收藏
页数:15
相关论文
共 30 条
  • [1] Neuroimaging and Machine Learning for Dementia Diagnosis: Recent Advancements and Future Prospects
    Ahmed, Md Rishad
    Zhang, Yuan
    Feng, Zhiquan
    Lo, Benny
    Inan, Omer T.
    Liao, Hongen
    [J]. IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2019, 12 : 19 - 33
  • [2] Alzheimer's Diseases Detection by Using Deep Learning Algorithms: A Mini-Review
    Al-Shoukry, Suhad
    Rassem, Taha H.
    Makbol, Nasrin M.
    [J]. IEEE ACCESS, 2020, 8 : 77131 - 77141
  • [3] Towards a Better Understanding of Transfer Learning for Medical Imaging: A Case Study
    Alzubaidi, Laith
    Fadhel, Mohammed A.
    Al-Shamma, Omran
    Zhang, Jinglan
    Santamaria, J.
    Duan, Ye
    Oleiwi, Sameer R.
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (13):
  • [4] [Anonymous], EUROPEAN DLB EDLB CO
  • [5] [Anonymous], Papers with Code: Image classification on MNIST
  • [6] [Anonymous], COMPLETE LISTING ADN
  • [7] Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism
    Brown, Richard K. J.
    Bohnen, Nicolaas I.
    Wong, Ka Kit
    Minoshima, Satoshi
    Frey, Kirk A.
    [J]. RADIOGRAPHICS, 2014, 34 (03) : 684 - 701
  • [8] Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer's disease to Parkinson's disease
    Choi, Hongyoon
    Kim, Yu Kyeong
    Yoon, Eun Jin
    Lee, Jee-Young
    Lee, Dong Soo
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (02) : 403 - 412
  • [9] A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain
    Ding, Yuming
    Sohn, Jae Ho
    Kawczynski, Michael G.
    Trivedi, Hari
    Harnish, Roy
    Jenkins, Nathaniel W.
    Lituiev, Dmytro
    Copeland, Timothy P.
    Aboian, Mariam S.
    Aparici, Carina Mari
    Behr, Spencer C.
    Flavell, Robert R.
    Huang, Shih-Ying
    Zalocusky, Kelly A.
    Nardo, Lorenzo
    Seo, Youngho
    Hawkins, Randall A.
    Pampaloni, Miguel Hernandez
    Hadley, Dexter
    Franc, Benjamin L.
    [J]. RADIOLOGY, 2019, 290 (02) : 456 - 464
  • [10] A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET
    Etminani, Kobra
    Soliman, Amira
    Davidsson, Anette
    Chang, Jose R.
    Martinez-Sanchis, Begona
    Byttner, Stefan
    Camacho, Valle
    Bauckneht, Matteo
    Stegeran, Roxana
    Ressner, Marcus
    Agudelo-Cifuentes, Marc
    Chincarini, Andrea
    Brendel, Matthias
    Rominger, Axel
    Bruffaerts, Rose
    Vandenberghe, Rik
    Kramberger, Milica G.
    Trost, Maja
    Nicastro, Nicolas
    Frisoni, Giovanni B.
    Lemstra, Afina W.
    van Berckel, Bart N. M.
    Pilotto, Andrea
    Padovani, Alessandro
    Morbelli, Silvia
    Aarsland, Dag
    Nobili, Flavio
    Garibotto, Valentina
    Ochoa-Figueroa, Miguel
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) : 563 - 584