Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

被引:513
作者
Boreyko, Jonathan B. [1 ]
Collier, C. Patrick [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
superhydrophobic; icephobic; dropwise condensation; jumping drops; frost; SOLID-SURFACES; CONDENSATION; WATER; ICE; WETTABILITY; FABRICATION; NUCLEATION; MECHANISM; DYNAMICS;
D O I
10.1021/nn3055048
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to Ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.
引用
收藏
页码:1618 / 1627
页数:10
相关论文
共 48 条
  • [1] Dynamics of Ice Nucleation on Water Repellent Surfaces
    Alizadeh, Azar
    Yamada, Masako
    Li, Ri
    Shang, Wen
    Otta, Shourya
    Zhong, Sheng
    Ge, Liehui
    Dhinojwala, Ali
    Conway, Ken R.
    Bahadur, Vaibhav
    Vinciquerra, A. Joseph
    Stephens, Brian
    Blohm, Margaret L.
    [J]. LANGMUIR, 2012, 28 (06) : 3180 - 3186
  • [2] [Anonymous], 1974, Ice Physics
  • [3] GROWTH OF BREATH FIGURES
    BEYSENS, D
    KNOBLER, CM
    [J]. PHYSICAL REVIEW LETTERS, 1986, 57 (12) : 1433 - 1436
  • [4] Planar jumping-drop thermal diodes
    Boreyko, Jonathan B.
    Zhao, Yuejun
    Chen, Chuan-Hua
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (23)
  • [5] Self-propelled jumping drops on superhydrophobic surfaces
    Boreyko, Jonathan B.
    Chen, Chuan-Hua
    [J]. PHYSICS OF FLUIDS, 2010, 22 (09)
  • [6] Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
    Boreyko, Jonathan B.
    Chen, Chuan-Hua
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (18)
  • [7] Anti-Icing Superhydrophobic Coatings
    Cao, Liangliang
    Jones, Andrew K.
    Sikka, Vinod K.
    Wu, Jianzhong
    Gao, Di
    [J]. LANGMUIR, 2009, 25 (21) : 12444 - 12448
  • [8] Wettability of porous surfaces.
    Cassie, ABD
    Baxter, S
    [J]. TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 : 0546 - 0550
  • [9] Dropwise condensation on superhydrophobic surfaces with two-tier roughness
    Chen, Chuan-Hua
    Cai, Qingjun
    Tsai, Chialun
    Chen, Chung-Lung
    Xiong, Guangyong
    Yu, Ying
    Ren, Zhifeng
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (17)
  • [10] Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
    Chen, Xuemei
    Wu, Jun
    Ma, Ruiyuan
    Hua, Meng
    Koratkar, Nikhil
    Yao, Shuhuai
    Wang, Zuankai
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (24) : 4617 - 4623