Gene expression rule discovery and multi-objective ROC analysis using a neural-genetic hybrid

被引:7
作者
Keedwell, Ed [1 ]
Narayanan, Ajit [2 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[2] Auckland Univ Technol, Sch Comp & Math Sci, Auckland 1142, New Zealand
关键词
MOO; multi-objective optimisation; gene expression classification; hybrid methods; GAs; genetic algorithms; neural networks; microarrays; ROC analysis; CANCER; CLASSIFICATION; LYMPHOMA;
D O I
10.1504/IJDMB.2013.054225
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microarray data allows an unprecedented view of the biochemical mechanisms contained within a cell although deriving useful information from the data is still proving to be a difficult task. In this paper, a novel method based on a multi-objective genetic algorithm is investigated that evolves a near-optimal trade-off between Artificial Neural Network (ANN) classifier accuracy (sensitivity and specificity) and size (number of genes). This hybrid method is shown to work on four well-established gene expression data sets taken from the literature. The results provide evidence for the rule discovery ability of the hybrid method and indicate that the approach can return biologically intelligible as well as plausible results and requires no pre-filtering or pre-selection of genes.
引用
收藏
页码:376 / 396
页数:21
相关论文
共 26 条
  • [1] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [2] [Anonymous], 200001 KANGAL IND I
  • [3] Role of homeobox genes in normal mammary gland development and breast tumorigenesis
    Chen, HX
    Sukumar, S
    [J]. JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2003, 8 (02) : 159 - 175
  • [4] Reliable classification of two-class cancer data using evolutionary algorithms
    Deb, K
    Reddy, AR
    [J]. BIOSYSTEMS, 2003, 72 (1-2) : 111 - 129
  • [5] Deb K., 2010, MULTIOBJECTIVE OPTIM
  • [6] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868
  • [7] Multi-class ROC analysis from a multi-objective optimisation perspective
    Everson, Richard M.
    Fieldsend, Jonathan E.
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 918 - 927
  • [8] Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis
    Garcia-Nieto, J.
    Alba, E.
    Jourdan, L.
    Talbi, E.
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (16) : 887 - 896
  • [9] Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30+ T-cell lymphoproliferations
    Geissinger, Eva
    Sadler, Petra
    Roth, Sabine
    Grieb, Tina
    Puppe, Bernhard
    Mueller, Nora
    Reimer, Peter
    Vetter-Kauczok, Claudia S.
    Wenzel, Joerg
    Bonzheim, Irina
    Ruediger, Thomas
    Mueller-Hermelink, Hans Konrad
    Rosenwald, Andreas
    [J]. HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2010, 95 (10): : 1697 - 1704
  • [10] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537