Hausdorff Dimension of the Set of Endpoints of Typical Convex Surfaces

被引:0
作者
Riviere, Alain [1 ]
机构
[1] CNRS, UMR 7352, Fac Sci Amiens, Lab Amienois Math Fondamentales & Appl, F-80039 Amiens 1, France
关键词
Cut locus; Hausdorff dimension; convex body; SPACES; CURVATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We mainly prove that most d-dimensional convex surfaces Sigma have a set of endpoints of Hausdorff dimension at least d/3. An endpoint means a point not lying in the interior of any shorter path in Sigma. "Most" means that the exceptions constitute a meager set, relatively to the usual Hausdorff-Pompeiu distance. The proof employs some of the ideas used in [9] about a similar question. However, our result here is just an estimation about a still unsolved question, as much as we know.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 15 条
[1]  
Adiprasito K, 2012, J CONVEX ANAL, V19, P385
[2]   Infinite curvature on typical convex surfaces [J].
Adiprasito, Karim .
GEOMETRIAE DEDICATA, 2012, 159 (01) :267-275
[3]  
Alexandrov A. D., 2006, ALEXANDROV SELECTE 2
[4]  
Alexandrov AD., 1939, Leningrad State Univ. Ann. Uchenye Zapiski Math. Ser, V6, P3
[5]  
[Anonymous], HDB CONVEX GEOMETRY
[6]  
Falconer K., 1990, Fractal Geometry
[7]   SOME NEW RESULTS ON SMOOTHNESS AND ROTUNDITY IN NORMED LINEAR SPACES [J].
KLEE, V .
MATHEMATISCHE ANNALEN, 1959, 139 (01) :51-63
[8]  
OTSU Y, 1994, J DIFFER GEOM, V39, P629
[9]  
Rivière A, 2007, J CONVEX ANAL, V14, P823
[10]   Generic properties of compact metric spaces [J].
Rouyer, Joel .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (16) :2140-2147